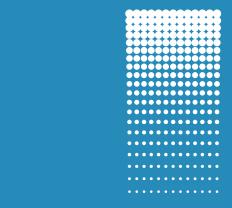
前言

本公司於1987年所印製的目錄曾經受到廣大用戶的好評。但近十年來,公司新產品不斷增加而傳統紙本目錄又有印製數量的限制,我們一度打算以光碟取代傳統紙本目錄。但是許多用戶仍然反應希望有紙本的目錄。因此我們於兩年前開始研議編訂新的目錄以回應客戶的需求。

這份目錄原訂於2009年本公司四十五週年時發行,但遇上JIS為與ISO整合,陸續發行新版規格,為使內容跟得上最新的規格,我們大幅修訂原稿,以致延誤了整個發行的時程,謹向各位親愛的客戶致歉!

本目錄有兩大特點:


- (1)以鋼種區分大類,各篇均始於鋼材的特性介紹(尤以與銲接相關的特性),續之以銲材的選用,最後才是銲材的產品介紹。有別於傳統銲材目錄以介紹銲材的角度出發;我們嘗試以客戶的角度出發,依母材→銲材選用→銲材介紹的順序編排。為了容納多出來的技術資料,將產品的介紹予以條列化以減少產品介紹的篇幅,務求此目錄能真正從客戶的觀點出發,幫助客戶做最好的選擇。
- (2)有鑒於國內普遍引用AWS規格,實際工作方式卻又受JIS影響。 因此參考資料中特別加強對這兩份規格的説明,除了數據的引 用,更增加文字説明,希望能幫助大家真正了解規格的內涵。

在此,有些注意事項要特別提醒大家:

- AWS 目前採用公制、英制並列的方式。為了配合公制的推行,未來 我們將盡量採用公制的標示。但為了配合國內使用習慣,本目錄仍 採兩制並行的標示。例如: A5.4代表英制; A5.4M 則代表公制。
- ◎ 目錄中有關產品之數據部份,係依標準測試條件所得結果,由於實際施工條件未必與標準測試條件相同,因此數據係供參考,並不能作為保證之用。
- ◎ 本公司的產品品名中,部份有分隔號"-",此分隔號僅用於編排 的調整或識別上的方便,並非品名之一部份。例如:GS-12K= GS12K。
- ◎ 本產品目錄中所有資料雖為出版前的最新資料,但AWS、JIS相關 規格仍陸續修訂中,本公司亦可能因市場需求或改良的需要而變更 產品,所作變更無法另行通知。因此如您對產品內容有疑問或需要 最新正式資料,請與本公司營業單位連絡。

配合本目錄的發行,本公司將更新網頁。未來有關規格與產品的變動將會利用網站不定時發佈,與產品應用有關的技術資料也會利用網站 予以補充以提供客戶更好、更即時的服務,歡迎多加利用!

錄

【目錄】

銲	接材	料-	- 覽表					 	 6
軟	鋼及	高引	長力 鋼月	Ħ –					_
	材料	特化	生簡介					 	 . 19
ī	電銲	條							
ī	0,1		対選用					 	 . 22
			妾作業!						
		產。	品介紹					 	 . 24
	MAC		MIG用						
		銲7	才選用					 	 . 37
		銲	妾作業.						
		產	品介紹					 	 40
	電熱		查銲接						
-		特化	生説明!	與銲	接注	意事」	頁	 	 46
			品介紹						
	氬銲		(碳鋼)						
		特1	生説明!	與銲	接作	業要黑	貼	 	 50
			品介紹						
	潛弧		泉/銲劑						
		銲7	才選用					 	 54
		銲扫	妾作業	要點				 	 55
		產。	品介紹					 	 . 57
	氣體	遮言	舊包藥:	銲線	(FC	AW))		
		銲7	讨選用					 	 . 60
		銲扌	妾作業	要點				 	 . 61
		產	品介紹					 	 62
14			小笛						69
	们科	1寸1	生簡介					 	 08
	耐熱	鋼力	刊						
		3	焊材選,	用				 	 70
		Ē	電銲條						

銲接作業要點	
產品介紹	. 73
■ 包樂軒線 銲接作業要點	. 77
產品介紹	
低温鋼用	
電銲條	
銲接作業要點及銲材選用	
產品介紹	. 84
包藥銲線	
銲接作業要點	. 87
產品介紹	. 88
■耐候鋼用	
電銲條	
聲	. 92
產品介紹	
■ 包藥 銲線	
。 銲接作業要點	. 95
產品介紹	
■高抗拉高降伏強度鋼用	
電銲條	
≇	. 98
產品介紹	
。 銲接作業要點	. 102
產品介紹	
, aa	
不銹鋼 ————————	-
■材料特性簡介	. 105
■ 母材與適用銲材選用表	. 108
電銲條	

ч
7
P
i k

	銲接作業要點	111
	產品介紹	112
	MIG·TIG用銲線	
	MIG銲接作業要點	121
	TIG銲接作業要點	122
	產品介紹	123
	潛弧銲線	
	銲接作業要點	131
	產品介紹	132
	氣體遮護包藥銲線	
	銲接作業要點	134
	產品介紹	135
硬	面耐磨鋼 —————	
	硬面銲簡介	143
	硬面銲銲材選用表	145
	銲接注意事項	147
	電銲條	
	銲接作業要點	150
	抗強烈衝擊磨耗用	150
	緩衝層及接合修補用	152
	金屬與金屬間磨耗用	153
	金屬與砂土間磨耗用	156
	抗嚴重磨耗用	159
	抗耐熱疲勞及耐腐蝕用	163
	包藥銲線	
	銲接作業要點	165
	抗強烈衝擊磨耗用	166
	緩衝層及接合修補用	168
	金屬與金屬間磨耗用	171
	金屬與砂土間磨耗用	177
	抗嚴重磨耗用	183
	耐熱疲勞及耐腐蝕用	192

● 鎳基合金	
■ 材料特性簡介	197
■ 鎳基合金及鎳基合金與異種金屬銲接的材料匹配表 .	198
電銲條	
銲接作業要點	201
產品介紹	202
MIG·TIG用銲線	
銲接作業要點	208
產品介紹	209
● 鑄鐵用 ━━━━━━	
■ 材料特性簡介	211
■ 銲材選用	212
■電銲條	
銲接作業要點	
產品介紹	215
其它	
切割開槽用	
產品介紹	219
TILL 6.17	
● 附錄 ———————————————————————————————————	000
AWS銲接規格	220
JIS銲接規格	286
硬度對照表	324
度量衡換算表	327

銲接材料一覽表

電銲條 / SMAW							
细括	規 格 ⁽²⁾ 規 格 ⁽²⁾			頁次			
亚門 作里	生吅石件	CNS	AWS	JIS ⁽³⁾	次		
	G03	E4303	A5.1M E4313相當 A5.1 E6013相當	ÚIS Z3211 E4303	24		
	NK32	E4303	A5.1M E4313相當 A5.1 E6013相當	(IS) Z3211 E4303	24		
	G10	E4310	A5.1M E4310 A5.1 E6010	Z3211 E4310	25		
	G11	E4311	A5.1M E4311 A5.1 E6011	(IS) Z3211 E4311	25		
	K120	E4313	A5.1M E4313 A5.1 E6013	(IS) Z3211 E4313	26		
軟	G13	E4313	A5.1M E4313 A5.1 E6013	(IS) Z3211 E4313	26		
鋼	G13VD	E4313	A5.1M E4313 A5.1 E6013	(IS) Z3211 E4313	27		
及	ND150L	E4301	A5.1M E4319 A5.1 E6019	①IS Z3211 E4319U	27		
高張	D200	E4301	A5.1M E4319 A5.1 E6019	(II) Z3211 E4319U	28		
カ	G27	E4327	A5.1M E4327 A5.1 E6027	(IS) Z3211 E4327	28		
鈿	EX7	E4327	A5.1M E4327 A5.1 E6027	①S Z3211 E4327	29		
用	GL52	E5016	A5.1M E4916 A5.1 E7016	①IS Z3211 E4916UH10	29		
	GL5218	E5016	A5.1M E4918 A5.1 E7018	①IS Z3211 E4918H10	30		
	GL24	E5003	A5.1M E4924 A5.1 E7024	(IS) Z3211 E4903	30		
	GL524	E5003	A5.1M E4924 A5.1 E7024	(IS) Z3211 E4924	31		
	GL5226	E5026	A5.1M E4928 A5.1 E7028	(IS) Z3211 E4928UH15	31		
	GL528	E5026	A5.1M E4928 A5.1 E7028	(II) Z3211 E4928UH15	32		

電銲條 / SMAW							
鋼種	產品名稱 ⁽¹⁾	規 格 ⁽²⁾					
业则 17里	生吅石件	CNS	AWS	JIS ⁽³⁾	頁次		
軟	EX55V	E5016	A5.1M E4948 A5.1 E7048	(II) Z3211 E4948H10	32		
鋼	GL55*	E5316	A5.5M E5516-G A5.5 E8016-G	(IS) Z3211 E5716H10	33		
及高	GL60*	E5816	A5.5M E6216-G A5.5 E9016-G	(IS) Z3211 E5716H10	33		
張力	GL70*	E7016	A5.5M E6916-G A5.5 E10016-G	Z3211 E6916-N4M3相當	34		
鋼	GL80*	_	A5.5M E7616-G A5.5 E11016-G	Z3211 E7816-N4CM2	34		
用	GL100*	_	A5.5M E8316-G A5.5 E12016-G	Z3211 E8318-N4C2M2相當	35		
	GL76A1 / GL78A1	_	A5.5M E4916 (8) -A1 A5.5 E7016 (8) -A1	Z3223 DT1216	73		
耐	GL86B1 / GL88B1	_	A5.5M E4916 (8) -B1 A5.5 E8016 (8) -B1	Z3223 DT2316 (8)	73		
熱	GL86B2 / GL88B2	_	A5.5M E5516 (8) -B2 A5.5 E8016 (8) -B2	Z3223 DT2316(8)	74		
鋼	GL96B3 / GL98B3	_	A5.5M E6216 (8) -B3 A5.5 E9016 (8) -B3	Z3223 DT2416(8)	74		
用	GL86B6 / GL88B6	_	A5.5 M E5516 (8) -B6 A5.5 E8016 (8) -B6	_	75		
	GL86B8 / GL88B8	_	A5.5M E 5516 (8) -B8 A5.5 E8016 (8) -B8	_	75		
低	GL86C1 / GL88C1	_	A5.5M E5516 (8) -C1 A5.5 E8016 (8) -C1	Z3211 E5516(8)-N5	84		
溫鋼	GL86C2 / GL88C2	_	A5.5M E5516 (8) -C2 A5.5 E8016 (8) -C2	Z3211 E5516(8)-N7	84		
用	GL86C3 / GL88C3	_	A5.5M E5516 (8) -C3 A5.5 E8016 (8) -C3	Z3211 E5516(8)-N2	85		
耐候	GL78W1	_	A5.5M E4918-W1 A5.5 E7018-W1	Z3214 DA5016G	93		
鋼用	GL88W2	_	A5.5M E5518-W2 A5.5 E8018-W2	Z3214 DA5816W	93		

電銲條 / SMAW						
鋼種	基品名稱⁽¹⁾		頁次			
亚門 个里	生四位件	CNS	AWS	JIS ⁽³⁾	次	
高抗抗	GL98M	_	A5.5M E6218M A5.5 E9018M	Z3211 E6218-N3M1	99	
拉高降	GL108M	_	A5.5M E6918M A5.5 E10018M	Z3211 E6918-N3M2	99	
伏強度	GL118M	_	A5.5M E7618M A5.5 E11018M	Z3211 E7618-N4M2	100	
鋼用	GL128M	_	A5.5M E8318M A5.5 E12018M	Z3211 E8318-N4C2M2	100	
	G307	_	A5.4 E307-16	①S Z3221 ES307-16	112	
	G307M	_	A5.4 E307-26	(JS) Z3221 ES307-26	112	
	G308	E308-16	A5.4 E308-16	(IS) Z3221 ES308-16	113	
	G308L	E308L-16	A5.4 E308L-16	(IS) Z3221 ES308L-16	113	
	G308M	E308-16	A5.4 E308-26	(IS) Z3221 ES308-26	114	
	G309	E309-16	A5.4 E309-16	(IS) Z3221 ES309-16	114	
不	G309L	E309L-16	A5.4 E309L-16	(IS) Z3221 ES309L-16	115	
绣	G309MoL	E309MoL-16	A5.4 E309MoL-16	(JS) Z3221 ES309MoL-16	115	
	G310	E310-16	A5.4 E310-16	(JS) Z3221 ES310-16	116	
金岡	G312	_	A5.4 E312-16	(IS) Z3221 ES312-16	116	
	G316	E316-16	A5.4 E316-16	(IS) Z3221 ES316-16	117	
	G316L	E316L-16	A5.4 E316L-16	(is) Z3221 ES316L-16	117	
	G317	E317-16	A5.4 E317-16	(IS) Z3221 ES317-16	118	
	G347	E347-16	A5.4 E347-16	(IS) Z3221 ES347-16	118	
	G410	E410-16	A5.4 E410-16	(IS) Z3221 ES410-16	119	
	G2209	_	A5.4 E2209-16	(JS) Z3221 ES2209-16	119	

		電金	早條 / SMAW		
鋼種	產品名稱 ⁽¹⁾		規 格 (2)		頁次
ず川 1 里	生吅石件	CNS	AWS	JIS (3)	次
抗強	GH13M	EHMA-250B	_	Z3251 DFMA-250B	15
抗強烈衝擊用	HARDMANG1	_	_	_	151
擊用	HARDMANG3	_	_	_	151
緩衝層及接	GH300	EH2A-300B	_	Z3251 DF2A-300B	152
層 展 接	GH300R	EH2A-300R	_	Z3251 DF2A-300R	152
金	GH350R	EH2A-350R	_	Z3251 DF2A-350R	153
屬與	GH450	EH2A-450B	_	Z3251 DF2A-450B	153
金屬	GH450R	EH2B-450R	_	Z3251 DF2B-450R	154
間磨	GH600	EH3C-600B	_	Z3251 DF3C-600B	154
耗	GH600R	EH3B-600R	_	Z3251 DF3B-600R	155
金	GH750	EH3C-700B	_	Z3251 DF3C-700B	156
屬與	GH900	_	_	Z3251 DF5A-700B	156
砂土	HARD D	_	_	_	157
間磨	GH900W	_	_		157
耗	HARD 31	_	_	_	158
	HARD 35	_	_	_	159
抗	GH800	_	_	_	159
嚴	GH900Mn	_	_	_	160
重磨	GH950Nb	_	_	_	160
耗	GH950	_	_	_	161
用	GH950C	_	_	_	161
	GHCW	_	_	_	162

		電金	焊條 / SMAW		
鋼種	產品名稱 ⁽¹⁾		規 格 ⁽²⁾		頁次
亚門 个里	性 四句符	CNS	AWS	JIS ⁽³⁾	次
抗勞腐 熱及蝕 疲耐用	GH13Cr-4	_	_	_	163
	GNC 132	_	A5.11 ENiCrFe-1	Z3224 DNiCrFe-1	202
鎳	GNC 133	_	A5.11 ENiCrFe-2	Z3224 DNiCrFe-2	203
基合	GNC 182	_	A5.11 ENiCrFe-3	Z3224 DNiCrFe-3	204
金	GNC 112	_	A5.11 ENiCrMo-3	Z3224 DNiCrMo-3	205
	GNC 277	_	A5.11 ENiCrMo-5	Z3224 DNiCrMo-5	206
	GC100	_	A5.15 ENi-CI	Z3252 DFCNi	215
A=	GC55	_	A5.15 ENiFe-CI	Z3252 DFCNi Fe	215
鑄鐵	GCO	_	A5.15 ESt	Z3252 DFCFe	216
用	GCI-1	_	A5.15 ENi-CI	Z3252 DFCNi	216
713	GCI-2	_	A5.15 ENiFe-CI	Z3252 DFCNi Fe	217
	GCI-3	_	A5.15 ESt	Z3252 DFCFe	217
切	GGC	_	_	_	219
割開槽用	Gouging Carbon (碳精棒)	_	_	_	219
		MAG	G・TIG用銲線		
軟鋼	S-G	YGW11	A5.18M ER48S-G A5.18 ER70S-G	(IIS) Z3312 YGW11	40
及	S-4	YGW16	A5.18M ER48S-4 A5.18 ER70S-4	_	40
高張	S-6	YGW12	A5.18M ER48S-6 A5.18 ER70S-6	(II) Z3312 YGW12	41
カ	GW11	YGW11	A5.18M ER48S-G A5.18 ER70S-G	(IIS) Z3312 YGW11	41
鋼用	GW12	YGW12	A5.18M ER48S-6 A5.18 ER70S-6	(II) Z3312 YGW12	42

	MAG·TIG用銲線						
鋼種	產品名稱 ⁽¹⁾		規 格 ⁽²⁾		頁次		
亚門 7里	生 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CNS	AWS	JIS ⁽³⁾	次		
軟鋼	GW15	YGW15	_	(IIS) Z3312 YGW15	42		
軟鋼及高張力鋼用	GW18*	YGW18	A5.28M ER62S-G A5.28 ER90S-G	(II) Z3312 YGW18	43		
鋼用	GW19*	YGW19	A5.28M ER62S-G A5.28 ER90S-G	(IS) Z3312 G55A0UM19	43		
		電熱炸	容渣銲接 / ESW				
碳鋼用	YF-15I× PS-56	_	A5.25M FES482- ES-G-EW A5.25 FES70-ES-G- EW	Z3312 YGW11	48		
		霊	ā銲條 / TIG				
碳	GT50	_	A5.18M ER48S-6 A5.18 ER70S-6	Z3316 YGT50	51		
錮	GT52T	_	A5.18M ER48S-G A5.18 ER70S-G	_	51		
用	GT60	_	A5.28M ER55S-G A5.28 ER80S-G	_	52		
	GT308	Y308	A5.9 ER308	Z3321 YS308	123		
	GT308L	Y308L	A5.9 ER308L	Z3321 YS308L	124		
	GT309	Y309	A5.9 ER309	Z3321 YS309	124		
	GT309L	Y309L	A5.9 ER309L	Z3321 YS309L	125		
不	GT310	Y310	A5.9 ER310	Z3321 YS310	125		
銹	GT312	_	A5.9 ER312	Z3321 YS312	126		
	GT316	Y316	A5.9 ER316	Z3321 YS316	126		
鈿	GT316L	Y316L	A5.9 ER316L	Z3321 YS316L	127		
	GT347	Y347	A5.9 ER347	Z3321 YS347	127		
	GT410	Y410	A5.9 ER410	Z3321 YS410	128		
	GT430	_	A5.9 ER430	Z3321 YS430	128		
	GT630	_	A5.9 ER630	_	129		

		氫	a銲條 / TIG		
鋼種	產品名稱 ⁽¹⁾		規 格 (2)		頁次
少門 1°里	生山石(14)	CNS	AWS	JIS ⁽³⁾	次
鎳合	GTN82	_	A5.14 ERNiCr-3	Z3334 YNiCr-3	209
鎳 合 基 金	GTN625	_	A5.14ERNiCrMo-3	Z3334 YNiCrMo-3	209
		4	銲線 / MIG		
	GM307	_	A5.9 ER307	_	123
	GM308	Y308	A5.9 ER308	Z3321 YS308	123
	GM308L	Y308L	A5.9 ER308L	Z3321 YS308L	124
	GM309	Y309	A5.9 ER309	Z3321 YS309	124
不	GM309L	Y309L	A5.9 ER309L	Z3321 YS309L	125
銹	GM310	Y310	A5.9 ER310	Z3321 YS310	125
鋼	GM312	_	A5.9 ER312	Z3321 YS312	126
	GM316	Y316	A5.9 ER316	Z3321 YS316	126
	GM316L	Y316L	A5.9 ER316L	Z3321 YS316L	127
	GM347	Y347	A5.9 ER347	Z3321 YS347	127
	GM410	Y410	A5.9 ER410	Z3321 YS410	128
镍合	GMN82	_	A5.14 ERNiCr-3	Z3334 YNiCr-3	209
鎳合 基金	GMN625	_	A5.14 ERNiCrMo-3	Z3334 YNiCrMo-3	209
		潛弧銲	線·銲劑 / SAW		
	GA78×GS8	_	A5.17 F7A2-EL8	Z3183 S502-H	57
碳	GA78×GS12K	_	A5.17 F7A2-EM12K	Z3183 S502-H	57
鋼用	GA86×GS12K	_	A5.17 F7A4-EM12K	Z3183 S502-H	58
/13	NSH-60 × Y-D(G)	_	A5.23 F8A2-EG-G	Z3183 S582-H	58

銲接材料一覽表

	细纸	產品名稱 ⁽¹⁾	規 格 (2)								
	鋼種	産品名件`	CNS	AWS	JIS ⁽³⁾	頁次					
	不	GS308/ GS308L	_	A5.9 ER308 A5.9 ER308L	Z3324 YS308 Z3324 YS308L	132					
	銹	GS309/ GS309L	_	A5.9 ER309 A5.9 ER309L	Z3324 YS309 Z3324 YS309L	132					
	鋼	GS316/ GS316L	_	A5.9 ER316 A5.9 ER316L	Z3324 YS316 Z3324 YS316L	132					
		包藥銲線/FCAW									
		GMX70	_	A5.20M E490T-1C A5.20 E70T-1C	Z3313 T49J2T1- 0CA-H10	62					
	碳	GMX71	_	A5.20M E491T-1C A5.20 E71T-1C	Z3313 T49J2T1- 1CA-H10	63					
	鈿	GMX71M	_	A5.20M E491T-1M A5.20 E71T-1M	Z3313 T49J2T1- 1MA-H10	64					
	用	GMX71Ni	_	A5.20M E491T-9C A5.20 E71T-9C	_	65					
		MXC76M	_	A5.18M E48C-6M A5.18 E70C-6M	_	66					
		GMX308L	_	A5.22 E308LT1-1	(IS) Z3323 TS308L-FC1	135					
	不	GMX308L-O	_	A5.22 E308LT0-3	(IS) Z3323 TS308L-FN0	136					
	銹	GMX309L	_	A5.22 E309LT1-1	(IS) Z3323 TS309L-FC1	137					
		GMX309L-O	_	A5.22 E309LT0-3	(IS) Z3323 TS309L-FN0	138					
	鈿	GMX309LMo	_	A5.22 E309LMoT1-1	OIS Z3323TS309LMo-FC1	139					
		GMX316L	_	A5.22 E316LT1-1	(IS) Z3323 TS316L-FC1	140					
	耐	GMX811A1	_	A5.29M E551T1-A1C A5.29 E81T1-A1C	_	78					
	熱 鋼	GMX811B2	_	A5.29M E551T1-B2C A5.29 E81T1-B2C	_	79					

A5.29M E621T1-B3C

A5.29 E91T1-B3C

80

潛弧銲線/SAW

		包藥	聲線 / FCAW		
鋼種	產品名稱 ⁽¹⁾		規 格 ⁽²⁾		頁次
业则 1 里	生吅石件	CNS	AWS	JIS ⁽³⁾	次
低	GMX811Ni1	_	A5.29M E551T1-Ni1C A5.29 E81T1-Ni1C	_	88
溫鋼	GMX811Ni2	_	A5.29M E551T1-Ni2C A5.29 E81T1-Ni2C	_	89
用	GMX911Ni2	_	A5.29M E621T1-Ni2C A5.29 E91T1-Ni2C	_	90
耐鋼候用	GMX811W2	_	A5.29M E551T1-W2C A5.29 E81T1-W2C	_	96
高 高 路 り り り り り り り り り り り り り り り り り	GMX101K3	_	A5.29M E691T1-K3C A5.29 E101T1-K3C	_	103
抗衝	MXW MANG1	_	_	_	166
抗蟹烈用	MXW MANG3	_	_	_	167
緩合	MXW BU-O	_	_	_	168
疫 衛 層 及 接 補 用	MXW BU-G	_	_	_	169
緩衝層及接合修補用	MXW K104-S	_	_	_	170
金	MXW SUPER BU-G	_	_	_	171
屬與	MXW BB-G	_	_	_	172
金屬	MXW 102-G	_	_	_	173
間	MXW K102-S	_	_	_	174
磨耗	MXW K105-S	_	_	_	175
用	MXW K107-S	_	_	_	176

GMX911B3

照明	
	頁
照明	頁次
與	177
砂土間 MXW 969-O	178
間 MXW M7-G ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー	179
利 MXW R117 - - - MXW R100 - - - MXW R100 - - - MXW R101 - - - MXW R100D - - - MXW R100SHD - - - MXW 62-O - - - AMXW 63-O - - - MXW 65-O - - -	180
MXW R100 — — — MXW R101 — — — 抗 MXW R100D — — — 蔵 MXW R100SHD — — — — 重 MXW 62-O — — — — 耗 MXW 63-O — — — — 用 MXW 65-O — — — —	181
MXW R101 — — 抗 MXW R100D — — 嚴 MXW R100SHD — — 重 MXW 62-O — — 耗 MXW 63-O — — 用 MXW 65-O — —	182
抗 MXW R100D	183
版 MXW 和100SHD — MXW 62-O — MXW 63-O — H MXW 65-O	184
重 R100SHD — — 磨 MXW 62-O — — — 耗 MXW 63-O — — — 用 MXW 65-O — — —	185
磨 MXW 62-O — — — 耗 MXW 63-O — — — 用 MXW 65-O — — —	186
耗 MXW 63-O — — — 用 MXW 65-O — — —	187
101/200 03-0	188
MXW 66-O — — — —	189
	190
MXW 70-O — — — —	191
熱 4 I UNIIVIO	192
疲	193
耐 MXW	194
蝕 MXW — — — — — — — — — — — — — — — — — — —	195

与数码约刀瓣测力数码约 / FO A NAI T O A NAI

註解:

- 1.註記"*"產品之分類係依照JIS及ISO。
- 2.規範略寫意義:

CNS=Chinese National Standards, (中華民國國家標準)。 JIS=Japanese Industrial Standards,(日本工業規格)。 AWS=American Welding Society, (美國銲接協會)。

下列規範略寫可能出現在產品包裝上:

ASME=American Society of Mechanical Engineers, (美國機械工程學會)。

ABS=American Bureau of Shipping, (美國驗船協會)。

CR=China Corporation Register of Shipping, (中國驗船中心)。

LR=Lloyd's Register of Shipping,(英國勞氏驗船協會)。

NK=Nippon Kaiji Kyokai, (日本海事協會)。

BV=Bureau Veritas, (法國驗船協會)。

3. (ni) 的定義為產品符合JIS規格,並取得JIS MARK標示許可。

材料特性簡介

通常鋼鐵是以碳的含量多寡來作分類,但何以要用碳來作分類的基準,而非矽、錳等其他元素?如果翻閱材料的規格,在許多碳鋼的規格中,矽、錳的含量還高於碳,何以我們要用碳來區分鋼的種類?

因為碳在鐵中主要是以 Fe_3C 化合物的形態存在也就是雪明碳鐵(請注意,在這裡,強調的是主要而非全部以 Fe_3C 的形態存在)。此化合物是決定碳鋼的機械特性的最主要因素。換句話説,此雪明碳鐵的含量幾乎就決定了碳鋼的硬度與抗拉強度。

在雪明碳鐵中,碳的原子量約是12,而鐵的原子量大約是55.8,三個鐵原子加上一個碳原子三179.5,因此碳的重量比約僅有6.68%。換句話說,以重量而言,1個單位重量的碳若全部以雪明碳鐵的形式存在鐵中,將可形成約有15個單位重量的雪明碳鐵。以含碳量0.3%的碳鋼為例,假設裡面的碳全部以雪明碳鐵的形態存在,則該碳鋼中的雪明碳鐵含量約為4.5%。稍微增減C的含量,雪明碳鐵的含量變化是將近十五倍之多。也就是因為這樣的原因,所以只要稍微改變碳的含量,其機械性質就會有很大變化,這是了解碳對鋼材的影響機制十分重要的觀念。

而一般碳鋼含碳量在0.3%以下稱為低碳鋼或軟鋼;0.3~0.5%稱中碳鋼;0.5%以上稱高碳鋼。

由於銲接熱影響區的硬化是銲接性劣化的要因,而鋼材的銲接性與含碳量有關,同時與錳、矽及其他元素之含量也有關,因此把合金元素對鋼的硬化影響度與碳做比較,換算成碳當量,因此我們可以根據碳當量來 判斷銲接性之優劣及施行預熱與銲道間温度之控制。

碳當量算式如下:

碳當量 Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%) Ceq、C、Mn、Si、Ni、Cr、Mo、V 為重量百分比

如果碳當量在0.4%以下,HV<350時,不易發生銲裂;超過這個範圍,就必須進行預熱。(碳當量(Ceq)越大越容易硬化,也越容易發生冷裂)。

若根據 IIW (國際銲接學會) 規格,也可以採用下列算式: Ceq=C+Mn/6+1/5(Cr+Mo+V) +1/15(Ni+Cu) (%)

碳當量與銲接熱影響區的最高硬度的關係如下: 最高硬度 HVmax=1200×Ceq-200

熱影響區最高硬度與預熱、後熱的關係

最高硬度 Hmax (HV)	預熱與後熱		
200以下	不需要		
200~250	如果可以,最好實施		
250~325	150℃以上的預熱,後熱650℃		
325以上	250℃以上的預熱及銲後650℃的後熱或者完全 退火熱處理		

註:適度的預熱及後熱可有效防止因熱影響的硬化造成冷裂。

上述資料旨在説明碳當量對銲接的重要影響。實際施工時的預熱及後熱還需要考慮工件的大小板厚等予以調整。

預熱與銲道間溫度控制:

- a. 一般常見結構用鋼為低碳鋼,在AWS D1.1(鋼結構銲接法規)之表 3.2説明預熱及銲道間温度與銲接方法及板厚有關。
- b.碳當量在0.4%以下時,銲接性優良,在0.4%至0.5%之間時較為困難,在0.5%以上相當困難。
- c. 中碳鋼碳當量約在 0.45%~0.60%間時,且母材的厚度過厚、形狀過 於複雜時,銲後之銲道容易造成高應力,引起銲後龜裂。建議預熱温 度在250℃,銲後650℃的後熱或者完全狠火熱處理。
- d.中、高碳鋼的銲接宜依銲件大小、熱處理規定及適用銲材選擇做個案 處理。

母材很可能有含磷、硫成份偏高的變異情形,易發生銲接高温龜裂,最 好銲前先核對材質證明,再採行適當的銲接對策。

選擇適當開槽角度及根部間隙,可避免造成滲透不足、拘束力過大或龜 裂等或其他缺陷。

軟鋼及高張力鋼用電銲條

銲材選用

力鋼

	NS 規格 A5.1)	_	E6010 E6011	E6013	E6019	E6027	E7016	E7018	E7024	E7028	E7048
JI	S 規格	E4303	E4310 E4311	E4313	E4319	E4327	E4916U H10	E4918 H10	E4924	E4928U H15	E4948 H10
被	覆種類	石灰氧 化鈦系	高纖維 素系	高氧化 鈦系	鈦鐵 礦系	鐵粉氧 化鐵系	低氫系	鐵粉低 氫系	鐵粉氧 化鈦系	鐵粉低 氫系	低氫系
銲 :	接性能										
打	亢裂性	0	0	0	0	0	☆	☆	0	0	☆
射線	檢測性能	0	0	0	0	0	☆	☆	0	0	0
衝	擊性能	0	0	0	0	0	☆	☆	0	0	0
作	業性										
	平銲	☆	0	☆	0	0	0	0	0	0	_
	平角銲	☆	0	☆	0	☆	0	0	☆	☆	_
銲 接	立銲 上進	Δ	0	0	0	_	☆	☆	_	_	_
姿勢	立銲 下進	_	☆	0	Δ	_	_	_	_	_	☆
	横、仰 銲	Δ	☆	0	0	_	0	0	_	_	
銲	平銲	☆	\triangle	☆	0	0	0	0	0	0	_
道	平角銲	☆	Δ	☆	0	☆	0	0	☆	☆	_
外觀	立、仰 或橫銲	Δ	☆	0	0	_	0	0	_	_	☆
滲	透強度	0	☆	Δ	0	Δ	0	0	Δ	Δ	0
₽	再引弧	☆	☆	☆	0	☆	_	_	☆	☆	Δ
金	早濺量	0	Δ	0	0	0	0	0	0	0	0
Æ	兑渣性	☆	0	0	0	0	0	0	0	0	☆
銲	接速度	0	Δ	0	0	0	0	0	0	0	☆
適	用薄板	0	Δ	☆	0	Δ	Δ	Δ	Δ	Δ	Δ

註:☆:極優良,◎:優良,○:一般,△:很差,─:不適合使用 此資料僅供參考若相關詳細情形請與本公司連絡

銲接作業要點

- 1.被覆銲條應避免吸濕,否則易造成氣孔、落藥、銲濺物增多、再引弧效果差、耐電性以及銲接金屬機械性能劣化等現象。
- 2. 銲條的烘烤乾燥以目錄產品的建議温度為主,即軟鋼銲條約70~100℃x1小時,低氫系銲條300~350℃x1小時。
- 3. 工件母材上的雜質、油污或銹蝕可能使銲接金屬擴散氫含量增加而導 致機械性劣化,故銲接前務必清除乾淨。
- **4.** 母材經火焰切割後,其切割端面於施銲前,須適當研磨以去除氧化膜或較粗糙的切割痕。
- 5. 銲接參數(電流、電壓、入熱量)須依據銲接程序書,但不得超出產品的建議適用範圍。
- 6. 預熱、後熱請參閱材料特性簡介或法規的規定。
- **7**. 銲接環境中,風雨之影響應有適當的遮蔽,且工件銲接前須烘烤去除 溼氣。
- 8. 低氫系電銲條銲接時應盡可能維持短電弧銲接,以避免氫及氧氣滲入 電弧中造成氣孔。行走織動寬度不宜超過其心線線徑之3倍。
- 9. 大部分被覆銲條均可適用AC和DC(±)極性施銲,原則上均以AC 為主。
- 10.電流極性的説明:

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN(DC-):為自流負電極,銲條銲線或電極接負極,又稱作

直流正極性(DCSP)。

產品特色:

容易。

用涂:

立刻再引弧。

• 平角銲性能特優。

鋼結構等銲接。

電性能佳。

• 石灰氧化鈦系軟綱電銲條。

• 酸性玻璃質網狀渣, 脱渣

• 再引弧性能優越,能迅速

• 能接受較高銲接電流,耐

• 常用於中厚板的一般結構

物如船體、車架、建築、

產品介紹

力鋼

•

● 常用於中厚板的一般結構 物如船體、車架、建築、 機械、鋼結構等銲接。

G03 JIS Z

AWS A5.1M E4313相當 / A5.1 E6013相當 JIS Z 3211 E4303 CNS E4303

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.07	0.29	0.47	0.018	0.011	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-20℃)J	
423	466	26	55	

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	80~100	100~140	150~200	230~280
立仰銲	70~90	90~130	120~170	170~220

◎使用注意事項: 參見第23頁銲接作業要點。

G10

AWS A5.1M E4310 / A5.1 E6010 JIS Z 3211 E4310 CNS E4310

產品特色:

- 直流專用高纖維素系軟鋼電銲條。
- 電弧穿透力強、集中性高。
- 酸性玻璃質渣,脱渣非常容易。
- ・鐵水凝固速度快,有利於 管路滲透銲接。

用途:

● 適用於中薄板單面開槽的 打底窄縫之高壓管路銲 接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.09	0.10	0.39	0.018	0.012	Bal.

銲接金屬(全銲道)機械性能之一例

			,		
降伏強度		抗拉強度	延伸率	衝擊值	
	N/mm² N/mm²		%	(-30°C) J	
	464	548	25	61	

尺寸(mm)及電流範圍(A) DC+

線徑/長度	2.6/300	3.2/350	4.0/400	
平銲	60~90	70~110	110~150	
立仰銲	50~80	60~100	100~140	

◎使用注意事項:參見第23頁銲接作業要點。

NK32

AWS A5.1M E4313相當 / A5.1 E6013相當 JIS Z 3211 E4303 CNS E4303

產品特色:

- 石灰氧化鈦系軟鋼電銲 條。
- 酸性玻璃質網狀渣,脱渣容易。
- 再引弧性能優越,能迅速 再引弧。
- 能接受較高銲接電流,耐 電性能佳。
- 平角銲性能特優。

用涂:

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.07	0.27	0.46	0.016	0.013	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²	%	(-20℃)J
419	460	27	

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	80~100	100~140	150~200	230~280
立仰銲	70~90	90~130	120~170	170~220

◎使用注意事項: 參見第23頁銲接作業要點。

G11

AWS A5.1M E4311 / A5.1 E6011 JIS Z 3211 E4311 CNS E4311

產品特色:

- 高纖維素系軟鋼電銲條。
- 電弧穿透力強、集中性 高、滲透力深。
- 鐵水凝固速度快,對立、 仰銲及銲槽狹窄銲件之銲 接極為有利。
- 很適合銲接姿勢變化多的 狹窄空間銲件的施銲。

用途:

● 適用於中薄板、單面開槽 的打底、窄縫之高壓管路 銲接 。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.13	0.12	0.39	0.016	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-30℃)J
120	108	28	57
429	490	20	57

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/350	4.8/350
平銲	70~110	110~150	160~210
立仰銲	60~100	100~140	150~200

◎使用注意事項:參見第23頁銲接作業要點。

力鋼

K120

AWS A5.1M E4313 / A5.1 E6013 JIS Z 3211 E4313 CNS E4313

產品特色:

- 高氧化钛系軟綱電銲條。
- 電弧穩定、再引弧性能優
- 使用適當電流施銲, 渣殼 可自動翹起。
- 銲道紋路美觀細緻目光亮
- 無銲蝕,作業性能佳。

用涂:

適用小電流及薄板之銲 接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.05	0.29	0.28	0.019	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (0℃) J
433	474	27	67

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.0/300	2.6/300	3.2/350	4.0/400
平銲	50~70	60~90	100~130	150~180
立仰銲	45~60	60~70	90~120	130~160

◎使用注意事項: 參見第23頁銲接作業要點。

產品特色:

● 高氢化鈦系立銲下推專用 軟鋼 雷 程 條。

G13VD

- 電弧強度高、立銲下推時 銲渣控制性能極佳。
- 銲道成形及平角銲脱渣件 能佳。
- 電弧集中,再引弧性能優 里。

用涂:

• 適用於薄板及輕型鋼架、 車體及日常鐵製用品之銲 接。

全熔填銲接金屬化學成份之一例(wt%)

AWS A5.1M E4313 / A5.1 E6013 JIS Z 3211 E4313 CNS E4313

С	Si	Mn	Р	S	Fe
0.07	0.38	0.35	0.018	0.012	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (0℃)J
471	519	28	78

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.0/300	2.6/300	3.2/350	4.0/400
平銲	50~70	70~100	90~130	160~200
立仰銲	45~60	60~90	80~100	140~170

◎使用注意事項: 參見第23頁銲接作業要點。

G13

AWS A5.1M E4313 / A5.1 E6013 JIS Z 3211 E4313 CNS E4313

產品特色:

- 高氧化鈦系軟鋼電銲條。
- 電弧穩定、再引弧性能優 里。
- 使用滴當電流施銲, 渣殼 可自動翹起。
- 除了有同級品特性外,熔 融速度快,可增加融填效
- 可接受較高銲接電流,耐 雷性能佳。

用涂:

• 適用於薄板及輕型鋼架、 車體及日常鐵製用品之銲 接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.07	0.26	0.37	0.014	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

	降伏強度	抗拉強度	延伸率	衝擊值
l	N/mm ²	N/mm ²	%	(0℃) J
	453	479	28	70

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.0/300	2.6/350	3.2/350	4.0/400
平銲	50~70	60~90	100~130	150~180
立仰銲	45~60	60~70	90~120	130~160

◎使用注意事項: 參見第23頁銲接作業要點。

ND150L

AWS A5.1M E4319 / A5.1 E6019 JIS Z 3211 E4319U CNS E4301

產品特色:

- 鈦鐵礦系軟鋼電銲條,可 進行全姿勢銲接。
- 能接受較高銲接電流, 耐 雷性能佳。
- 脱渣非常容易。
- 容易通過射線檢測、機械 性能佳。

用涂:

● 適用於母材板厚20mm以 下之船體、車架、建築、 **橋樑、油槽、高壓容器及** 機械結構等銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.09	0.08	0.46	0.016	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值
N/mm²	N/mm²		(-20℃)J
439	475	29	82

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~80	100~140	140~190	230~280
立仰銲	50~70	80~100	120~160	170~220

◎使用注意事項:參見第23頁銲接作業要點。

力鋼

D200

AWS A5.1M E4319 / A5.1 E6019 JIS Z 3211 E4319U CNS E4301

產品特色:

- 鈦鐵礦系軟鋼電銲條。
- 可全姿勢銲接, 耐龜裂、 氣孔等缺陷。
- 剝渣非常容易。
- 容易通過射線檢測、機械 性能佳。
- 電弧集中, 銲道成形及紋 路美觀。

用涂:

● 適用於母材板厚20mm以下 之 船 體、 車架、 建築、 橋 樑、油槽、高壓容器及機 械結構等銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.11	0.15	0.41	0.018	0.010	Bal.

銲接金屬(全銲道)機械性能之一例						
K 伏強度	抗拉強度	延伸率	衝擊值			
N/mm ²	N/mm ²	%	(-20°C) J			

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-20℃)J
454	487	27	76

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~80	100~140	140~190	230~280
立仰銲	50~70	80~100	120~160	170~220

◎使用注意事項: 參見第23頁銲接作業要點。

產品特色:

● 專用於平銲、平角銲之鐵 粉高氧化鐵系軟鋼電銲

EX7

- 電弧穩定、再引弧性能優
- 熔填效率高、煙塵較同級 品低。
- 銲腳長平均,無銲蝕。
- 使用重力式角架銲接, 渣 殼誦常可自動翹起。

用涂:

型鋼或T型鋼樑之平角銲 單渞銲接。

全熔填銲接金屬化學成份之一例(wt%)

AWS A5.1M E4327 / A5.1 E6027 JIS Z 3211 E4327 CNS E4327

С	Si	Mn	Р	S	Fe
0.08	0.049	0.96	0.03	0.012	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-30℃)J
473	521	26	60

尺寸(mm)及電流範圍(A) AC或DC-

線徑/長度	5.0 550/700	6.0 550/700	6.4 550/700
平銲	180~230	240~290	260~310

適用於組合型鋼樑,如H ◎使用注意事項: 參見第23頁銲接作業要點。

G27

AWS A5.1M E4327 / A5.1 E6027 JIS Z 3211 E4327 CNS E4327

產品特色:

- 鐵粉氧化鐵系軟鋼電銲條。
- 銲道表面紋路十分美觀。
- 熔埴效率高。
- 銲道表面呈平至微凸狀, 銲腳長平均、無銲蝕。
- 使用重力式角架銲接, 渣 殼通常可自動翹起。

用涂:

● 適用於組合型鋼樑,如H 型鋼或T型鋼樑之平角銲 單道銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.06	0.049	0.96	0.03	0.01	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30℃)J
473	521	26	60

尺寸(mm)及電流範圍(A) AC或DC-

線徑/長度	5.0	6.0	6.4
	550/700	550/700	550/700
平銲	180~230	240~290	260~310

◎使用注意事項: 參見第23頁銲接作業要點。

GL52

AWS A5.1M E4916 / A5.1 E7016 JIS Z 3211 E4916UH10 CNS E5016

產品特色:

- 低氫系高張力鋼電銲條。
- 可進行全姿勢銲接。
- 容易通過射線檢測、機械 性能佳。
- 雖為鹼性渣, 脱渣仍非常 容易。

用涂:

• 常用於低合金鋼、中高碳 鋼、厚板及鑄件、車輛、 橋樑、鋼結構及船體等 490N/mm²高張力鋼之銲

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.08	0.46	0.91	0.019	0.009	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²		(-30℃)J
517	578	30	140

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450	6.0/450
平銲	70~100	100~140	140~190	220~300	280~340
立仰銲	60~90	80~110	120~160	160~200	_

◎使用注意事項: 1. 銲條使用需先以300~350℃ 乾燥60 分鐘。

2. 參見第23頁銲接作業要點。

AWS A5.1M E4918 / A5.1 E7018 JIS Z 3211 E4918H10 CNS E5016

產品特色:

- 鐵粉低氫系高張力鋼電銲
- 容易通過射線檢測、機械 性能佳, 銲道抗裂性優 異,成型美觀。
- 作業性佳、銲濺物少、脱 **渣性佳。**
- 立銲時熔渣控制性十分優

用涂:

• 常用於低合金鋼、中高碳 鋼、厚板及鑄件、車輛、 橋樑、鋼結構及船體等490 N/mm²高張力鋼之銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.09	0.60	1.32	0.020	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm ²	N/mm²	%	(-30°C) J
569	638	27	88

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450	6.0/450
平銲	100~140	140~190	220~300	280~330
立仰銲	80~110	120~160	160~200	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

GL524

AWS A5.1M E4924 / A5.1 E7024 JIS Z 3211 E4924 CNS E5003

產品特色:

- 鐵粉氧化鈦系高張力綱電 **銲條**。
- 熔填效率高。
- 銲道表面光亮紋路細緻美
- 再引弧容易熔渣控制性能 佳。
- 使用重力式角架銲接, 渣 殼誦常可自動翹起。

用涂:

● 適用於組合型鋼樑,如H 型鋼或T型鋼之平角銲單 渞銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.07	0.58	1.07	0.016	0.009	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²		(0℃)J
556	609	21	62

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	4.0	5.0	6.0
	550	550/700	550/700
平銲	160~190	210~250	280~320

◎使用注意事項: 1. 銲條使用前需先以100~150℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

GL24

AWS A5.1M E4924 / A5.1 E7024 JIS Z 3211 E4903 CNS E5003

產品特色:

- 鐵粉氧化鈦系高張力鋼電 **銲條**。
- 電弧穩定、再引弧性能優 畢。
- 銲接效率快可接受較快運 **基**速度。
- 酸性玻璃質網狀渣, 脱渣 容易。

用途:

 常用於薄、中厚板(25 mm以下)一般結構物如 船體、車架、建築、鋼結 構等490N/mm²高張力鋼 之銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.09	0.22	0.64	0.020	0.009	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (0℃)J
470	514	29	80

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	85~140	130~190	150~220
立仰銲	60~120	100~160	120~180

◎使用注意事項: 1. 銲條使用前需先以100~150℃ 乾燥 60分鐘。

2.參見第23頁銲接作業要點。

GL5226

AWS A5.1M E4928 / A5.1 E7028 JIS Z 3211 E4928UH15 CNS E5026

產品特色:

- 添加鐵粉提高熔填效率。
- 銲道表面光亮紋路細緻美
- 再引弧容易熔渣控制性能 佳。
- 重力式角架銲接時, 渣殼 通常可自動翹起。
- 可接受較高電流, 耐電性 能佳。

用涂:

● 適用於組合型鋼樑,如H 型鋼或T型鋼之平角銲單 渞銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.05	0.38	0.87	0.024	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值	
N/mm²	N/mm²		(- 20 ℃) J	
496	540	26	53	

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	4.0 450	5.0/5.5 550/700	6.0 550/700	6.4 550/700	
平組	160~200	200~240	250~280	280~310	

◎使用注意事項: 1. 銲條使用前需先以100~150℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

力鋼

電錯

產品介紹

GL528

AWS A5.1M E4928 / A5.1 E7028 JIS Z 3211 E4928UH15 CNS E5026

產品特色:

- •添加鐵粉提高熔填效率, 銲道表面紋路細緻美觀。
- 再引弧容易渣控制性能 佳。
- 重力式角架銲接時, 渣殼 通常可自動翹起。
- 可接受較高銲接電流,耐 雷性佳。

用涂:

● 適用於組合型鋼樑,如H型 鋼或T型鋼之平角銲單道銲 接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.05	0.38	0.87	0.024	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30℃) J
496	540	26	61

尺寸(mm)及電流範圍(A) AC或DC+

線徑	4.0	5.0	6.0	6.4
長度	450	550/700	550/700	550/700
平銲	160~200	200~240	250~280	

◎使用注意事項: 1. 銲條使用前需先以100~150℃ 乾燥 60分鐘。

2.參見第23頁銲接作業要點。

GL55

AWS A5.5M E5516-G / A5.5 E8016-G JIS Z 3211 E5716H10 CNS E5316

產品特色:

- 550N/mm²級低氫系高張 力鋼電銲條。
- 全姿勢銲接性佳。
- 容易通過射線檢測、機械 性能佳。
- 銲接金屬中氫含量低, 銲 道耐龜裂性良好。

用涂:

● 嫡用於550N/mm²級高張 力鋼之壓力容器及結構物 的主要銲道的銲接。

4	全熔填銲接金屬化學成份之一例(wt%)								
	С	Si	Mn	Ni	Fe				
	0.07	0.66	1 2/	0.03	Ral				

銲接金屬(全銲道)機械性能之一例 降伏強度 抗拉強度 延伸率 衝擊值 N/mm² N/mm² % (-20°C) J 558 623 28 170

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450	6.0/450
平銲	100~140	150~190	200~270	280~350
立仰銲	80~110	120~160	160~190	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

EX55V

AWS A5.1M E4948 / A5.1 E7048 JIS Z 3211 E4948H10 CNS E5016

產品特色:

- 低氫系立銲下進專用高張 力鋼電銲條。
- 進行立銲下進時熔渣控制
- 立銲銲道表面佳,紋路細 緻美觀。
- 銲道耐裂性及機械性能優 里。

用途:

• 適用於船體、橋樑、鋼架 結構、壓力容器之立銲下 推銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Р	S	Fe
0.09	0.42	0.79	0.019	0.009	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30℃) J
489	562	30	68

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	線徑/長度 3.2/350		5.0/450	
平銲	110~140	170~190	240~280	

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2.需以短電弧銲接。
 - 3. 參見第23頁銲接作業要點。

GL60

AWS A5.5M E6216-G / A5.5 E9016-G JIS Z 3211 E5716H10 CNS E5816

產品特色:

- 620/Nmm²級低氫系高張力 電銲條。
- 全姿勢銲接性佳。
- 容易涌過射線檢測、機械 性能佳。
- 銲接金屬中氫含量低, 銲 道耐龜裂性良好。

用途:

● 適用於620N/mm²級厚板 高張力鋼結構物如:橋 樑、建築、機械、壓力容 器等的銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Ni	Мо	Fe
0.05	0.38	0.79	0.97	0.26	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-20℃)J
588	665	27	110

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450	6.0/450
平銲	100~140	150~190	200~270	280~340
立仰銲	80~110	120~160	160~190	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第23頁銲接作業要點。

軟鋼及高張力鋼用電銲條

產品特色:

- 690N/mm² 級低氫系高張 力電銲條。
- 全姿勢銲接性佳。
- 容易通過射線檢測、機械 性能佳。
- 銲接金屬中氫含量低, 銲 道耐龜裂性良好。

用途:

● 適用於690N/mm²級高張力 鋼之壓力容器及結構物的 銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Ni	Мо	Fe
0.07	0.47	1.18	0.95	0.47	Bal.

銲接金屬(全銲道)機械性能之一例						
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %				
677	724	24				

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	線徑/長度 3.2/350		5.0/450	6.0/450
平銲	100~140	150~190	200~270	280~340
立仰銲	80~110	120~160	160~190	—

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

GL80

AWS A5.5M E7616-G A5.5 E11016-G JIS Z3211 E7816-N4CM2

產品特色:

- 760N/mm²級低氫系高張 力電銲條。
- 全姿勢銲接性佳。
- 容易通過射線檢測、機械 性能佳。
- 銲接金屬中氫含量低,銲 道耐龜裂性良好。

用涂:

● 適用於760N/mm²級高張 力鋼之壓力容器及結構物 的銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.07	0.59	1.54	1.97	0.28	0.41	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率
N/mm²	N/mm²	%
767	860	

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450	6.0/450
平銲	100~140	150~200	220~270	280~340
立仰銲	80~110	120~150	160~190	—

◎使用注意事項: 1. 銲條使用前請先以300~350℃ 乾燥 60分鐘。

2.參見第23頁銲接作業要點。

GL100

AWS A5.5M E8316-G A5.5 E12016-G JIS Z3211 E8318-N4C2M2相當

產品特色:

- 830N/mm² 級低氫系高張 力電銲條。
- 全姿勢銲接性佳。
- 容易通過射線檢測、機械 性能佳。
- 銲接金屬中氫含量低, 銲 道耐龜裂性良好。

用涂:

● 嫡用於830N/mm²級高張 力鋼之壓力容器及結構物 的銲接。

全熔填銲接金屬化學成份之一例(wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.06	0.38	1.41	2.00	0.58	0.43	Bal.

鋥接金屬(全鋥道)機械性能之一例

降伏強度	抗拉強度	延伸率
N/mm ²	N/mm ²	%
821	899	21

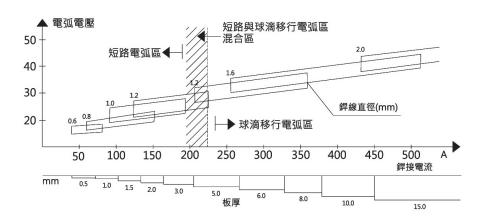
尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~200	220~270
立仰銲	50~80	80~110	120~150	160~190

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第23頁銲接作業要點。

MAG·MIG用銲線


銲材選用

	·	#± .l# 50 no	規格		
品名	遮護氣體	特性說明	AWS	JIS	
S-4	CO₂或混合氣 (註)	較ER70S-3具有更高脱氧效果,不需檢驗衝擊韌性。	ER 70S-4	YGW 12	
S-6	CO₂或混合氣 (註)	單道及多道銲,適當抗銹性 能,可容許較大電流。	ER 70S-6	YGW 12	
S-G	CO₂或混合氣 (註)	單道及多道銲,其他特性 由買賣雙方協商而定。	ER 70S-G	YGW 11	
GW11	CO_2	含Ti, Zr脱氧劑,適合軟鋼及490MPa級高張力鋼大電流銲接。	_	YGW 11	
GW12	CO_2	適合軟鋼及490MPa級高 張力鋼小電流薄板銲接及 立銲上進姿勢銲接。	_	YGW 12	
GW15	80%Ar+20%CO ₂	含Ti, Zr脱氧劑,適合軟鋼及490MPa級高張力鋼大電流銲接。	_	YGW 15	
GW16	80%Ar+20%CO ₂	適合軟鋼及490MPa級高 張力鋼小電流薄板銲接及 立銲上進姿勢銲接。	_	YGW 16	
GW18	CO_2	含Mo及Ti, Zr脱氧劑,適合 大電流及高入熱量銲接, 機械性能較YGW11優良。	ER 90S-G	YGW 18	
GW19	80%Ar+20%CO ₂	含Mo及Ti, Zr脱氧劑,適合 大電流,高入熱量銲接, 機械性能較YGW15優良。	ER 90S-G	YGW 19	

註:若使用 $Ar+CO_2$ 混合氣時,銲接金屬中的SiDMn含量會隨Ar含量的增加而增加;相對機械性能會與使用 CO_2 不同。

銲接作業要點

- 1. 常用遮護氣體種類: 二氧化碳、氦氣/二氧化碳混合氣、氦氣/氢氣混 合氣。
- 2.建議遮護氣體流量為20至25L/min為適當。
- 3. 在有風處銲接,易發生氣孔,需採取適當之防風措施。特別要避免電 風扇直吹銲接區。
- 4.作業場所請採取抽風措施。
- 5.CO₂銲線表面鍍銅,可避免生銹和吸濕,唯線材仍應注意保存於乾燥 場所。
- 6.CO₂氣體調節器、送線機及銲機等相關設備,如故障或損壞均對銲接 結果有不良影響。使用前需確實檢查與調整。
- 7.採用混合氣銲接時,氣體混合比的變化對銲接結果有很大影響,故必 須維持其穩定性。
- 8.主要結構物不建議使用立、仰銲接。
- 9.CO₂銲接條件之選擇及電弧種類,如下圖。

註: 銲接電流、電壓的調整會決定熔滴移行的方式(球滴及短路移行等)。

10. 建議銲接條件及參數如下:

線徑尺寸 (mm)	電流 (A)	電壓 (V)
0.6	40-80	12-18
0.8	60 – 160	15-23
0.9	60-200	19-27
1.0	80-230	19-29
1.2	120-350	20-34
1.4	240-380	26-38
1.6	260-450	28-40

11.MAG及MIG説明:

MAG銲接: 為氣體遮護金屬電弧銲接的變化型,遮護氣體為活性氣

體,如CO。、CO。與Ar的混合氣等。

MIG銲接:為氣體遮護金屬電弧銲接的變化型,遮護氣體為情性氣

體,如He、Ar或混合氣等。

12. 電流極性的説明:

DCEP(DC+): 為直流正電極, 銲條銲線或電極接正極, 又稱作

直流反極性(DCRP)。

DCEN(DC-): 為直流負電極, 銲條銲線或電極接負極, 又稱作

直流正極性(DCSP)。

用銲線

產品介紹

AWS A5.18M ER48S-G / A5.18 ER70S-G JIS Z 3312 YGW11 CNS YGW11

產品特色:

- 軟鋼及490N/mm²高張力 鋼銲線。
- 線材中含鈦元素,有利於 脱氧及減少銲濺物。
- ◆大電流銲接時,作業性優良。
- 銲接速度快,滲透深度 高,能從事高效率銲接。

用途:

● 適用於車輛、機械用具、 產業機械、鐵架、橋樑 及造船等的軟鋼及490N/ mm²級高張力鋼等各種結 構物的銲接。

線材化學成份之一例 (wt%)					
С	Si	Mn	Р	S	Fe
0.07	0.80	1.54	0.025	0.013	Bal.

銲接金	金屬(全銲道)機械性能。	之一例
降伏強度	抗拉強度	延伸率	衝擊值
N/mm ²	N/mm ²	%	(-30°C) J
505	582	30	81

尺寸(mm)及電流範圍(A) DC+				
線徑	1.2	1.4	1.6	
平銲	120~350	240~380	260~450	
水平角銲	120~350	240~380	260~450	
遮護氣體	CO ₂			

◎使用注意事項: 參見第38頁銲接作業要點。

產品特色:

 軟鋼及490N/mm²高張力 鋼銲線。

S-6

- 對薄板及全姿勢銲接作業 性佳。
- ●線材成分Si、Mn含量較高,對銲接金屬有較佳的 脱氧效果。

用途:

●適用於車輛、家電、輕型 鋼、鋼管、鐵架、橋樑 及造船等使用軟鋼及490 N/mm²級高張力鋼等各種 結構物的銲接。 AWS A5.18M ER48S-6 / A5.18 ER70S-6 JIS Z 3312 YGW12 CNS YGW12

	線材化	學成份	之一例	(wt%)	
С	Si	Mn	Р	S	Fe
0.08	0.90	1.50	0.016	0.006	Bal.

1	銲接金	会屬(全銲道)機械性能力	械性能之一例		
	降伏強度	抗拉強度	延伸率	衝擊值		
ŀ	N/mm²	N/mm²	%	(-30°C) J		
l	485	570	28	62		

尺寸(mm)及電流範圍(A) DC+					
線徑	線徑 0.8/0.9 1.0 1.2				
平銲	60~200	80~230	120~350	260~400	
立銲	立銲 60~100 80~180 120~150			_	
遮護氣體	應護氣體 CO₂				

◎使用注意事項: 1.參見第38頁銲接作業要點。
2 立銲及立銲下推不建議用在結構物。

S-4/GW16

AWS A5.18M ER48S-4 / A5.18 ER70S-4 JIS Z 3312 YGW16 CNS YGW16

產品特色:

- 軟鋼及490N/mm²高張力鋼 銲線。
- 適薄板及全姿勢銲接。
- 作業性佳。
- 適合中低電流銲接時,電 弧穩定,銲濺物少、銲道 美觀。

用途:

● 適用於車輛、家電、輕型 鋼、鋼管、鐵架、橋樑 及造船等的軟鋼及490N/ mm²級高張力鋼等各種結 構物的銲接。

級材化學成份之一例 (Wt%)					
С	Si	Mn	Р	S	Fe
0.06	0.81	1.49	0.021	0.023	Bal.

銲接金屬(全銲道)機械性能之一例 降伏強度 N/mm² 抗拉強度 % (0℃) J 473 567 27 84

尺寸(mm)及電流範圍(A) DC+					
線徑	0.9	1.0	1.2		
平銲	60~200	80~230	120~350		
立銲	60~100	80~180	120~150		
遮護氣體 CO ₂					

◎使用注意事項: 1.參見第38頁銲接作業要點。2 立銲及立銲下進不建議用在結構物。

GW11

AWS A5.18M ER48S-G / A5.18 ER70S-G JIS Z 3312 YGW11 CNS YGW11

產品特色:

- 軟鋼及490N/mm²高張力鋼 銲線。
- 線材中含鈦元素,有利於 脱氧及減少銲濺物。
- 大電流銲接時,作業性 佳。
- 銲接速度快,滲透深,能 從事高效率銲接。

用途:

●適用於車輛、機械用具、 產業機械、鐵架、橋樑 及造船等的軟鋼及490N/ mm²級高張力鋼等各種結 構物的銲接。

線材化學成份之一例 (wt%)							
С	Si	Mn	Р	S	Fe		
0.07	0.89	1.60	0.020	0.025	Bal.		

銲接金屬(全銲道)機械性能之一例降伏強度
N/mm²抗拉強度
%延伸率
(-30℃) J衝擊值
(-30℃) J52759428135

尺寸(mm)及電流範圍(A) DC+					
線徑	1.2	1.4	1.6		
平銲	120~350	240-380	260~450		
水平角銲	120~350	240-380	260~450		
遮護氣體	CO ₂				

◎使用注意事項: 參見第38頁銲接作業要點。

GW12

AWS A5.18M ER48S-6 / A5.18 ER70S-6 JIS Z 3312 YGW12 CNS YGW12

產品特色:

- 軟鋼及490N/mm²高張力 **翻**銲線。
- 對薄板及全姿勢銲接作業 性佳。
- 線材成分Si、Mn含量較 高,對銲接金屬有較佳的 脱氢效果。

用途:

• 適用於車輛、家電、輕型 鋼、鋼管、鐵架、橋樑 N/mm²級高張力鋼等各種 結構物的銲接。

線材化學成份之一例 (wt%)						
С	Si	Mn	Р	S	Fe	
0.07	0.86	1.51	0.015	0.018	Bal.	

銲接金屬(全銲道)機械性能之一例						
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-30℃) J			
465	570	28	62			

F	尺寸(mm)及電流範圍(A) DC+					
線徑	線徑 0.8/0.9 1.0 1.2 1.6					
平銲	60~200	80~230	120~350	260~400		
立銲	60~100	80~180	120~150	_		
遮護氣體	CO_2					

◎使用注意事項: 1.參見第38頁銲接作業要點。 2 立銲及立銲下進不建議用在結構物。

產品特色:

● 620N/mm²級高張力綱銲

GW18

- 嫡合大入熱量銲接。
- 機械性佳。
- 線材中含鈦元素,有利於 脱氧及減少銲濺物。

用涂:

• 嫡用於車輛、輕型鋼、鋼 管、鐵架、橋樑及造船 等的620N/mm²級高張力 鋼各種結構物的銲接。

Z	線材化學成份之一例 (wt%)					
	С	Si	Mn	Мо	Ti	Fe
	0.08	0.88	1.63	0.16	少量	Bal.

AWS A5.28M ER62S-G / A5.28 ER90S-G JIS Z 3312 YGW18 CNS YGW18

7	銲接金屬(全銲道)機械性能之一例					
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (0℃) J		
	647	704	22.4	157		

尺寸(mm)及電流範圍(A) DC+					
線徑	1.2	1.4	1.6		
平銲	120~350	240-380	260~450		
水平角銲	120~350	240-380	260~450		
遮護氣體	CO_2				

◎使用注意事項: 參見第38頁銲接作業要點。

GW15

JIS Z 3312 YGW15 CNS YGW15

產品特色:

- 軟鋼及490N/mm²高張力鋼 銲線。
- 銲接電流可調整範圍較寬。
- 低電流銲接時,電弧穩定、 銲濺物少、銲道美觀。

用途:

適用於車輛、家電、輕 型鋼、鋼管、鐵架、橋 樑及造船等的軟鋼及490 N/mm²之各種結構物的銲

◎使用注意事項:

1.表中銲接金屬(全銲道)機械 性能之一例是使用80%Ar+ 20%CO。遮護氣體銲接出來 的數據。

線材化學成份之一例 (wt%)					
С	Si	Mn	Р	S	Fe
0.06	0.59	1.45	0.004	0.022	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (<i>-</i> 20℃)J
475	545	30.4	145

尺寸(mm)及電流範圍(A) DC+ 線徑 0.9 1.0 1.2 平銲 80~230 120~350 60~200 80~180 120~150 60~100 遮護氣體 混合氣

- 2. 參見第38頁銲接作業要點。
- 3 立銲及立銲下進不建議用在結構物。

GW19

AWS A5.28M ER62S-G / A5.28 ER90S-G JIS Z 3312 G55A0UM19 CNS YGW19

產品特色:

- 軟鋼及620N/mm²高張力鋼 **銲線**。
- 嫡合大入熱量銲接。
- 機械性能佳。
- 線材中含鈦元素,有利於 脱氧及減少銲濺物。

用涂:

• 適用於車輛、輕型鋼、鋼 管、鐵架、橋樑及造船等 的620N/mm²級高張力鋼 各種結構物的對接與角銲

	線材化學成份之一例 (wt%)					
	С	Si	Mn	Мо	Ti	Fe
(0.08	0.70	1.81	0.16	少量	Bal.

銲接金屬(全銲道)機械性能之一例 降伏強度 抗拉強度 延伸率 衝擊值 N/mm² N/mm² % (-30°C) J 703 775 22.4 87

尺寸(mm)及電流範圍(A) DC+					
線徑	1.2	1.4	1.6		
平銲	120~350	240~380	260~450		
水平角銲	120~350	240~380	260~450		
遮護氣體	混合氣				

- ◎使用注意事項: 1.表中銲接金屬(全銲道)機械性能之 一例是使用80%Ar+20%CO。遮護 氣體銲接出來的數據。
 - 2. 參見第38頁銲接作業要點。

GW18、GW19到底是屬於哪一種等級的銲材?

對於GW18、GW19這兩種產品,相信必有人感到奇怪?怎麼會AWS的強度等級看來與JIS不同?以機械性質的數據來看,不是應該可以用於更高等級的高張力鋼嗎?

此銲線的開發源於日本阪神、淡路大震災的經驗。為了提高鋼構建築的耐震性,需確保樑柱接合部的機械性質,而接合部的機械性質又受到銲接金屬極大的影響。但在鋼構製作現場,為了提高施工效率,往往會以大電流增加熔填速度或是縮短等待銲道間温度冷卻的時間直接以較高的銲道間温度施銲。但是這麼一來,因為銲接區域長時間保持在高温,就造成了金屬結晶的粗大,進而使強度與韌性變差。因此為了使銲道的機械性質能合於規格要求,對於入熱量與銲道間温度的管理是十分重要的。

為了平衡上述兩點,日本建築學會與業界經過了各種的研究,開發了新的銲線並公佈了新的建築基準,使得大入熱量高效率銲接也能有良好的機械性能。JIS也因此修訂相關規格,把此一銲線納入JIS規格中。

GW18、GW19就是根據此一規格加以國產化的產品。由於此銲線的設計目的是在大入熱量、高銲道間温度(350℃)下,仍可符合490MPa的要求。所以當此銲線的入熱量較低時,可適用較高強度等級的鋼材。其使用區分如下表:

適用鋼材等級	銲線種類	銲接條件		
迪用調物寺 秘	亚干	入熱 KJ/cm	銲道間溫度℃	
400MPa級	YGW11, 15, 18,	15~40	≦350	
400IVIF and	19	15~30	≦150	
490MPa級	YGW11, 15	15~30	≦250	
49UNIFARX	YGW18, 19	15~40	≦350	
520MPa級	YGW18, 19	15~30	≦250	

單斜槽銲接接頭試驗之一例(GW18)					
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (0℃)J	溶接入熱 KJ/cm	銲道間温度
509	621	26.2	122	40	350 ℃

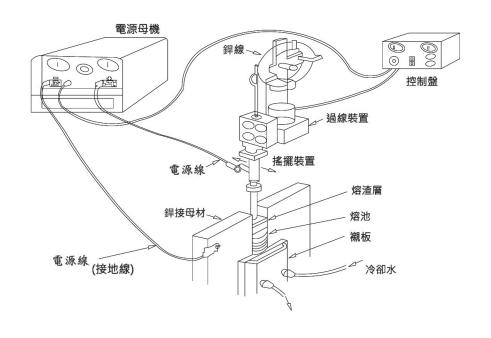
由此銲材的試驗資料來看,可以很明顯的看出入熱量對於機械性的影響。這個例子正好可以説明銲接條件的重要性,也提醒我們:理想的強度不是只看材料,還要看如何施工。

電熱熔渣銲接(ESW)用銲材

特性說

眀

特性說明


説明:

ESW(Electro-slag Welding)電熱熔渣銲,電極導管可分為消 耗性以及非消耗性,傳統為消耗性;非消耗性又稱SESNET是由日 鐵住金溶接工業株式會社所開發的改良型施工法,是一種高效率自 動垂直上進, 銲接姿勢屬於平銲的銲接方法。銲接過程需填加熔融 型銲劑及由送線機構將實心銲線經送線導管連續傳送至銲槽熔池。 本公司目錄所介紹的產品是屬於非消耗性電極導管,導管端部保持在熔 渣池上端且藉操控隨熔池上升, 銲線持續熔融形成銲接金屬,由下方開 始垂直上進。由於銲道被設計成四周圍束之細長直立方形銲槽,銲接時 熔池完全被熔渣覆蓋,且熔池與熔渣沿銲道逐漸上升,將母材及擋板之 銲槽節圍填滿。

應用:

板厚滴用範圍15~100mm,一般多運用於鋼骨結構箱型柱內橫隔板的 直立銲接, 也有用在類如大型儲槽的對接上。

如圖屬消耗性導管銲接機構:

銲接注意事項

- 1.高熔填速率, 送線速度約8.5~9.5M/min(380A)。
- 2. 電極導管的上升驅動,係依照預先設定的電流值,來達到自動控制的 效果。
- 3. 銲槽間隙範圍約20~30mm。
- 4. 銲線伸出長度:

開始時,調整為40~50mm

銲接時,調整為30~40mm,熔渣池厚度約15~20mm。

5. 電流極性的説明:

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN (DC-): 為直流負電極, 銲條銲線或電極接負極, 又稱作

直流正極性(DCSP)。

YF-15I× PS-56

AWS A5.25M FES482-ES-G-EW A5.25 FES70-ES-G-EW

產品特色:

- ●低碳鋼及490N/mm²級 高張力鋼使用ESW(SESNET)電熱熔渣銲接 之銲劑與銲線配組。
- 銲線為含有Mn、Mo等合 金元素之低合金鋼銲線, 銲劑屬熔融型。
- 垂直立向厚板銲接,銲接 效率高。
- ◆本銲劑是由日鐵住金溶接 工業株式會社提供。

用途:

● 適用於鋼結構、造船、橋 樑等結構物的銲接。

線材化學成份之一例 (wt%)						
С	Si	Mn	Мо	Fe		
0.06	0.51	1.48	0.15	Bal.		

銲接金屬(全銲道)機械性能之一例						
降伏強度	抗拉強度	延伸率	衝擊值			
N/mm ²	N/mm ²	%	(-20°C) J			
473	616	27	33			

尺寸(mm)及電流範圍(A)				
線徑	1.6			
電流範圍	300~450			
極性	DC+			

- ◎使用注意事項: 1. 銲槽間隙宜維持在24±4mm為適宜。
 - 2. 銲線伸出長度30~40mm,熔渣厚 度約15~20mm。
 - 3.參見第47頁電熱熔渣銲接注意事項。

氬銲條(碳鋼用TIG)

特性說明與銲接作業要點

TIG銲接時產生之電弧穩定性極佳,不產生銲濺物,銲道品質及外觀成型十分優良,適全姿勢銲接。由於其入熱量較其他銲接方法為低,多適用於薄板以及厚板或管件全滲透的打底銲接。

銲接使用注意事項:

1. 銲接雷極(鎢棒)

使用DC-為佳。(鎢棒必須接負極,方能忍受較高的電流,相對使銲接勢降低)。

2.遮護氣體

氫氣為主要使用的氣體。為防止產生銲道缺陷如凹坑及氣孔等,應採用高純度氫氣。適當氣體流量在室內時約12~18L/min。當在風速較高狀態下銲接,適當氣體流量建議為15~20L/min但仍需要有防風措施。此外,當送氣管路較長,如使用橡膠或尼龍製軟管路時,可能從軟管壁滲進濕氣。因此,建議採用金屬或鐵氟龍所製軟管為佳。

3. 鎢極棒

使用直流電源,建議採用含釷1~2%鎢極棒。隨著鎢極棒消耗,所產生電弧集中性會變差。此時須研磨加工修整鎢極棒尖端,以得更佳電弧集中效果。

4. 鎢極棒伸出長度

適當鎢極棒伸出長度通常為4~5mm,電弧長度約1~3mm。電弧過長時易造成保護不良以及銲蝕現象。若在銲接較難遮護的銲接點,如銲接較深銲槽的根部,電弧長度可為2~3mm。鎢極棒伸出長度可為5~6mm。

5.母材的清潔

由於TIG銲接對銲接處的雜質頗為敏感。因此,銲接部位附近的油汙及氧化膜等應確實清除。

6.防風措施

TIG銲接對風非常敏感,室外作業必須切實做好遮風措施。

7. 電流極性的說明

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN (DC-): 為直流負電極, 銲條銲線或電極接負極, 又稱作

直流正極性(DCSP)。

GT50

AWS A5.18M ER48S-6 / A5.18 ER70S-6 JIS Z 3316 YGT50

產品特色:

- 軟鋼及490N/mm²高張力 鋼用TIG棒材。
- 低温韌性優良,適於各種 管件接頭的打底及薄板的 全姿勢銲接。
- 以氬氣為遮護氣體,使用 直流負電極(DC-)施銲。

用途:

• 適用於一般碳鋼的銲接。

7		棒材化	,學成份	之一例	(wt%)	
	С	Si	Mn	Р	S	Fe
	0.07	0.86	1.51	0.015	0.018	Bal.

1	銲接金屬(全銲道)機械性能之一例						
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-20℃) J			
	493	567	27.0	147			

尺寸(mm)及建議使用遮護氣體				
線徑	1.6	2.0	2.4	3.2
長度	1000	1000	1000	1000
遮護氣體	Ar			

◎使用注意事項: 參見第50頁碳鋼TIG特性説明與銲接 作業要點。

GT52T

AWS A5.18M ER48S-G A5.18 ER70S-G

產品特色:

- 軟鋼及490N/mm²高張力鋼 用TIG棒材。
- 低温韌性優良,適於各種 管件接頭的打底及薄板的 全姿勢銲接。
- 棒材中添加有Ti元素,有利 於脱氧效果及金相組織的 細化,以獲得優良的機械 性能。

用途:

• 適用於一般碳鋼的銲接。

棒材化學成份之一例 (wt%)						
С	Si	Mn	Р	S	Ti	Fe
0.07	0.80	1.54	0.025	0.013	0.18	Bal.

銲接金屬(全銲道)機械性能之一例降伏強度
N/mm²抗拉強度
%延伸率
(-20℃) J衝擊值
(-20℃) J46056030.0110

尺寸(mm)及建議使用遮護氣體					
線徑	1.6	2.0	2.4	3.2	
長度	1000	1000	1000	1000	
遮護氣體	Ar				

◎使用注意事項: 參見第50頁碳鋼TIG特性説明與銲接 作業要點。

產品特色:

- 550 N/m m²高張力鋼用 TIG棒材。
- ●低温韌性優良,適於各種 管件接頭的打底及薄板的 全姿勢銲接。
- 棒材中添加有Ti元素,有 利於脱氧效果。

用途:

● 適用於Mn-Mo, Mn-Mo-Ni等高強度鋼材的銲接。

	棒材化	學成份	之一例	(wt%)	
С	Si	Mn	Мо	Ti	Fe
0.08	0.88	1.63	0.16	0.2	Bal.

銲接金屬(全銲道)機械性能之一例						
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-30℃)J			
517	610	26.0	95			

尺寸(mm)及建議使用遮護氣體							
線徑	1.6	3.2					
長度	1000	1000	1000	1000			
遮護氣體	Ar						

◎使用注意事項:參見第50頁碳鋼TIG特性説明與銲接 作業要點。

潛弧銲線·銲劑(SAW)

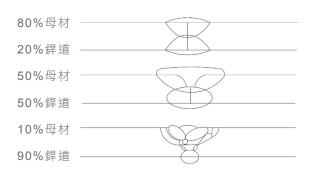
潛弧銲線

銲劑

銲材選用

品名	規格	特性說明
GA78×GS8	F7A2-EL8	燒結型銲劑搭配EL8銲線、適單道及多道 銲、單或雙極、強調作業性能及大電流銲 接、銲道成型美觀、脱渣優良。
GA78×GS12K	F7A2-EM12K	燒結型銲劑搭配EM12K銲線、適單道及多 道銲、銲道耐裂性佳、強調作業性能及大 電流銲接、容易通過射線檢測。
GA86×GS12K	F7A4-EM12K	燒結型銲劑、適單道及多道銲、機械性能 佳尤其衝擊韌性、耐氣孔性能優良。
NSH60×Y-D (G)	F8A2-EG-G	燒成型銲劑,此銲劑是由日鐵住金溶接工業株式會社開發,銲劑鐵粉含量高,屬高效率銲接。

建議銲接參數:【GA78×GS8、GA78×GS12K、GA86×GS12K、NSH60×Y-D (G)】


線徑	銲線伸	銲線伸 電壓	課 銲線											
尺寸 (mm)		(V)	消耗量	200	300	400	500	600	700	800	900	1000	1100	1200
2.4	25~30	18~25	kg/hr		3.6	6.4	9.8	13.9						
2.8	25~30	20~28	kg/hr		7.5	10.8	15.1	19.9						
3.2	25~30	23~30	kg/hr		6.5	9.4	12.8	16.7	20.8					
4.0	25~30	25~32	kg/hr			8.3	11.2	14.5	17.7	21.5				
4.8	25~30	28~36	kg/hr				10.1	12.8	15.5	18.5	21.4	24.9		
5.6	25~30	30~38	kg/hr					12.6	14.9	17.5	20.6	23.4	26.4	

銲接作業要點

1. 銲接開槽設計

開槽底部間距及開槽角度,常會影響滲透深度、鋼板過熱等問題。因此 準確開槽設計,在潛弧銲接時較其他銲接方法更加重要。

不同母材開槽設計影響銲道稀釋情形

2. 銲劑的分佈與再使用

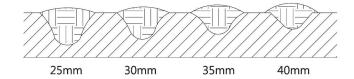
當銲劑散佈過厚,會造成銲道外觀不良,散佈厚度以稍可見微光為原 則。回收銲劑建議須與新銲劑各50%混合後再使用。

3. 銲劑的粒度選擇

粒度大小對銲道成形的影響也很重要。尤其是根據電流的大小,應選用 適當的粒度。當使用大電流銲接時,應選用粗粒度的銲劑。相反的,小 小麻點和其他缺陷出現的機會。

4. 銲接參數

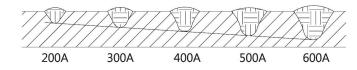
當銲接潛弧銲時,銲接參數諸如線徑尺寸、電流、電壓、銲接速度等, 須依照銲接程序書的規定。

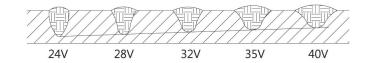

5. 銲劑的保存與烘乾

銲劑需保存於乾燥場所,使用前需將銲劑烘烤250~350℃×1小時,方 可確保銲接品質。

6. 銲線伸出長度

建議最佳銲線伸出長度為25~30mm,伸出長度與滲透的關係可參考下 圖。較長之伸出長度雖可增加熔填效率,但易造成滲透不足的現象。


銲線伸出長度


7. 銲接電流及電壓

請參考第54頁建議之適正電流及電壓銲接。下表一及表二為線徑4.0 mm之電流及電壓對銲道成形之影響。

電壓固定 電流 (A)

電流固定 電壓(∨)

8.雷流極性的說明:

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN(DC-):為百流負電極,銲條銲線或電極接負極,又稱作

直流正極性(DCSP)。

GA78×GS-8

AWS A5.17 F7A2-EL8

產品特色:

- 軟鋼及490N/mm²級高張 力鋼用潛弧銲材。
- 耐氣孔性、耐裂性優良。
- 銲道美觀, 脱渣十分容 易。

用途:

● 嫡用於造船、機械、鋼 構、橋樑等一般構造物 所用軟鋼以及50Kg/mm² 高張力鋼之單或多道的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Р	S	Fe		
0.04	0.19	1.14	0.024	0.011	Bal.		

7	銲接金屬(全銲道)機械性能之一例							
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30℃) J				
	432	485	32	41.5				

	銲接條件	
母材	板厚mm	銲接方法
A572	25	有墊板開槽 單極多道銲接

◎使用注意事項:參見第55頁潛弧銲線銲接作業要點。

GA78×GS-12K

AWS A5.17 F7A2-EM12K JIS Z 3183 S502-H

產品特色:

- 軟鋼及490N/mm²級高張 力鋼之潛弧銲線。
- 耐氣孔性、耐裂性優良。
- 銲渣剝離性與作業性優 良,銲道美觀、煙塵少。

用涂:

• 適用於造船、機械、鋼 構、橋樑等一般構造物所 用軟鋼以及50Kg/mm²高 張力鋼之單或多道銲的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)								
С	Si	Mn	Р	S	Fe			
0.05	0.58	1.71	0.023	0.015	Bal.			

銲接金屬(全銲道)機械性能之一例 降伏強度 抗拉強度 延伸率 衝擊值 N/mm² N/mm² % (-30°C) J 497 570 28 53.8

	銲接條件	
母材	板厚mm	銲接方法
A572	25	有墊板開槽 單極多道銲接

◎使用注意事項: 參見第55頁潛弧銲線銲接作業要點。

GA86×GS-12K

AWS A5.17 F7A4-EM12K JIS 7 3183 S502-H

產品特色:

- 韌性高,耐裂性良好。
- 銲渣剝離性與作業性佳。

用涂:

• 適用於海洋平台、造船、 壓力容器和工業建築結構 等490N/mm²級高張力鋼 之單或多道的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Р	S	Fe
0.07	0.57	1.55	0.025	0.023	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²	%	(-40℃)J
472	539	30	34

	銲接條件	
母材	板厚mm	銲接方法
A572	25	有墊板開槽 單極多道銲接

◎使用注意事項:參見第55頁潛弧銲線銲接作業要點。

$NSH-60\times Y-D$ (G)

AWS A5.23 F8A2-EG-G JIS Z 3183 S582-H

產品特色:

- 耐裂性良好, 銲渣剝離性 與作業性佳。
- 高效率銲接,衝擊性能優 良。
- 大入熱量及銲道間温度控 制在200℃以下銲接時, 仍有優良的機械性能。
- 本銲劑是由日鐵住金溶接 工業株式會社提供之高鐵 粉含量銲劑。

用涂:

● 適用於570N/mm²級高張 力鋼鋼構結構及橋樑之多 層銲接。

全熔填銲接金屬化學成份之一例 (wt%)

板厚mm	С	Si	Mn	Р	S	Fe
25	0.09	0.33	1.93	0.024	0.011	Bal.
80	0.09	0.24	1.70	0.023	0.010	Bal.

銲接金屬(全銲道)機械性能之一例

板厚 mm	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 J/℃
25	635	666	26	81/-30
80	502	588	27	104/-5

銲接條件

母材	板厚mm	銲接方法	堆積銲層
SM570M	25	有墊板開槽 單極多道銲接	13道/6層
SM570M	80	有墊板開槽 雙極多道銲接	18道/9層

◎使用注意事項: 參見第55頁潛弧銲線銲接作業要點。

氣體遮護包藥銲線(FCAW)

遮護包藥銲線

	品名	規格	特性說明
	GMX70	E70T-1C	CO ₂ ,DC+,高熔填氧化鈦系,平銲及平角銲 適用(單道或多道銲接)
	GMX71	E71T-1C	CO_2 , $DC+$,氧化鈦系,全姿勢適用(單道或 多道銲接)
	GMX71M	E71T-1M	(75~80%Ar+20~25%CO₂)混合氣,DC+, 氧化鈦系,全姿勢適用(單道或多道銲接)
GMX71Ni E71T-9C CO ₂ ,DC+,氧化鈦系,小線徑(全姿勢適用(單道或多道銲接)		CO ₂ ,DC+,氧化鈦系,小線徑(1.6mm以下) 全姿勢適用(單道或多道銲接)	
	MXC76M	E70C-6M	$(75~80\% Ar + 20~25\% CO_2)$ 混合氣, $DC+$,合成型,平銲及平角銲適用(單道或多道銲接)

銲接參考參數

線徑(mm)	電流(A)	電壓(V)	伸出長度(mm)
1.2	120~350	20~30	
1.4	160~380	22~34	15~25
1.6	200~450	24~36	

銲接作業要點

高張力鋼包藥銲線,計有兩種系列:包藥銲線GMX系列及合成型銲線 MXC系列,均可使用CO。或Ar+CO。混合氣為遮護氣體。兩種型式包藥 銲線各有其特性,敘述如下:

GMX系列

此碳鋼包藥銲線為有銲渣系列,具有相當良好的銲接作業性,例如電弧 穩定性佳及銲濺物極少,不管使用CO。或Ar+CO。混合氣為遮護氣體, 均具有脱渣容易以及優良的銲道外觀,可適合進行全姿勢銲接。

MXC系列

此碳鋼包藥銲線為無銲渣系的合成型包藥銲線,具有較高熔填效率,同 樣具有良好銲接作業性,特別在使用混合氣遮護時之電弧穩定性極佳目 銲濺物極低,另外,其銲渣量約與實心銲線相同,但剝離性較佳,在使 用上與實心銲線頗為相似,能適用於各種厚度鋼板,適用銲姿以平及橫 **銲為主。**

熔填速率

在相對應的銲材使用上,包藥銲線熔填速率高出傳統銲條1~5倍,目也 比實心銲線高出10至20%。特點是銲濺物遠較實心銲線低,廣受使用 者所偏好。

施銲包藥銲線有以下作業要點:

- 1.包藥銲線較為柔軟,因此送線時不可將送線輪的加壓手把調整太緊, 以免線材變形,導致送線不順。
- 2. 後退法可以得到較好的滲透,厚板打底建議使用;前進法滲透較淺, 多用在薄板銲接或外觀要求較佳的表面銲道。
- 3.立銲下進不建議用在厚板的打底銲道。
- 4. 銲接參數需依銲接程序書,但不官超出產品標示的建議電流範圍,否 則有熱裂的顧慮。
- 5.使用者可就工件的大小,評估效率因素選用嫡用的線徑。

雷流極性的說明:

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作直流

反極性 (DCRP)。

DCEN(DC-):為直流負電極,銲條銲線或電極接負極,又稱作直流

正極性(DCSP)。

遮護包藥銲線

產品特色:

- 高熔填氧化鈦系包藥銲線。
- ●熔填量大滲透力強,極適合 平銲及平角銲之高效率銲接。
- 銲道耐裂性及機械性能佳。
- 電弧極為穩定,銲濺物少,脱渣性 佳。
- 渣殼輕敲即可迅速脱除。

用途:

● 適用於機械、鋼結構、造船、橋 樑、鐵塔、車輛及儲槽等使用軟 鋼及490N/mm²高張力鋼之各種 結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)					
С	Si	Mn	Р	S	Fe
0.04	0.45	1.45	0.020	0.012	Bal.

銲接金屬(全銲道)機械性能之一例				
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-20 ℃)J
	551	589	26	33

	盘	非接參數		
4	泉徑 (mm)	1.2	1.4	1.6
	極性		DC+	DC+
電流 (A) 平銲、水平角銲及 横銲		120~350	160-380	200~450
遮護氣體		CO ₂	CO ₂	CO ₂

銲接注意事項:

- 1. 銲嘴與母材間的距離應保持在15~25mm的範圍。
- 2. 遮護氣體流量在20~25 L/min 最適宜。
- 3. 參見第61頁施銲包藥銲線之作業要點。

GMX 71

AWS A5.20M E491T-1C A5.20 E71T-1C JIS Z3313 T49J2T1-1CA- H10

產品特色:

- ●氧化鈦系CO₂氣體遮護包藥銲線。
- ●銲道表面紋路細緻美觀。
- 銲道耐裂性及機械性佳。
- ■電弧極為穩定,銲濺物少。脱渣性 佳。

用途:

● 適用於機械、鋼結構、造船、橋 樑、鐵塔、車輛及儲槽等使用軟 鋼及490N/mm²高張力鋼之各種 結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)					
C Si Mn P S Fe					
0.04	0.40	1.33	0.020	0.010	Bal.

	銲接	金屬(全銲道)機械性能之	一例
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	衝擊值 (-20 ℃) J
r	555	592	26	59

		銲接參數		
線徑 (mm)		1.2	1.4	1.6
極性	DC+	DC+	DC+	
	平、橫銲	120~350	160-380	200~450
電流 (A)	立銲上進	120~250	150-260	180~280
	立銲下進	200~280	220-280	250~280
遮護氣體		CO ₂	CO ₂	CO ₂

銲接注意事項:

- 1. 銲嘴與母材間的距離應保持在15~25mm的範圍。
- 2. 遮護氣體流量在20~25 L/min 最適宜。
- 3.參見第61頁施銲包藥銲線之作業要點。

GMX 71M

AWS A5.20M E491T-1M A5.20 E71T-1M JIS Z3313 T49J2T1-1MA-H10

產品特色:

- 氧化鈦系Ar+CO₂氣體遮護包藥銲 線。
- 銲道表面紋路細緻美觀。
- 銲道耐裂性及機械性佳。
- 電弧極為穩定銲濺物少脱渣性佳。

用途:

• 適用於機械、鋼結構、造船、橋 樑、鐵塔、車輛及儲槽等使用軟 鋼及490N/mm²高張力鋼之各種 結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Р	S	Fe	
0.04	0.35	1.28	0.020	0.010	Bal.	

1	銲接金屬(全銲道)機械性能之一例					
	降伏強度	抗拉強度	延伸率	衝擊值		
L	N/mm ²	N/mm ²	%	(-20 °C) J		
	560	591	28.4	71		

。				
線徑 (mm)		1.2	1.6	
極性		DC+	DC+	
電流 (A)	平、橫銲	120~350	200~450	
	立銲上進	120~250	180~280	
	立銲下進	200~280	250~280	
遮護氣體		80%Ar+20%CO ₂	80%Ar+20%CO ₂	

銲接注意事項:

- 1. 銲嘴與母材間的距離應保持在15~25mm的範圍。
- 2. 遮護氣體流量在20~25 L/min 最適宜。
- 3.參見第61頁施銲包藥銲線之作業要點。

GMX 71Nil

AWS A5.20M E491T-9C A5 20 F71T-9C

產品特色:

- 軟鋼及490N/mm²高張力鋼氧化鈦 系CO₂氣體遮護包藥銲線。
- 銲道表面紋路細緻美觀。
- 銲濺物極少, 銲渣剝離佳。
- 添加少量Ni元素,低温衝擊韌性及 抗裂性較一般銲線優異。

用途:

• 適用於機械、鋼結構、造船、橋 樑、鐵塔、車輛及儲槽等使用軟 鋼及490N/mm²高張力鋼之各種 結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
С	C Si Mn P S Ni Fe					
0.04	0.43	1.02	0.015	0.013	0.33	Bal.

銲接金屬(全銲道)機械性能之一例					
降伏強度	抗拉強度	延伸率	衝擊值		
N/mm²	N/mm ²	%	(-30 °C) J		
518	561	28.0	54		

銲接參數				
線徑 (mm)		1.2	1.6	
極性		DC+	DC+	
	平、横銲	120~350	200~450	
電流 (A)	立銲上進	120~250	180~280	
	立銲下進	200~280	250~280	
遮護氣體		CO ₂	CO ₂	

銲接注意事項:

- 1. 火嘴與母材間的距離應保持在15~25mm的範圍。
- 2. 遮護氣體流量在20~25 L/min 最適宜。
- 3.參見第61頁施銲包藥銲線之作業要點。

AWS A5.18M E48C-6M A5.18 E70C-6M

產品特色:

- 軟鋼及490N/mm²高張力鋼合成型 Ar+CO₂氣體遮護銲線。
- ●作業性極佳,銲接時幾乎沒有銲濺 物產生。
- 銲渣量極少且容易脱除,比傳統實 心銲線熔融快,熔填效率高。
- 銲接金屬氫含量極低,機械性及耐 裂性均佳,可提供極優良的衝擊韌 性。

用途:

• 適用於機械、鋼結構、造船、橋樑、鐵塔、車輛及儲槽等使用軟鋼及490N/mm²高張力鋼之各種結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)					
С	Si	Mn	Р	S	Fe
0.06	0.39	1.48	0.010	0.010	Bal.

銲接金屬(全銲道)機械性能之一例					
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30 ℃)J		
482	540	29.2	62		

銲接參數				
線徑 (mm)		1.2	1.6	
極性		DC+	DC+	
電流 (A)	平、横銲	120~350	200~450	
	立銲上進	120~250	180~280	
	立銲下進	200~280	250~280	
遮護氣體		80%Ar+20%CO ₂	80%Ar+20%CO ₂	

銲接注意事項:

- 1.遮護氣體建議流量在20~25 L/min 最適宜。
- 2.參見第61頁施銲包藥銲線之作業要點。

低合金鋼

材料特性簡介

1.低合金鋼定義

在合金鋼中,其鎳、鉻、鉬...等個別合金元素添加總量不超過10.5%稱 低合金鋼。

2.本公司產品適用於低合金鋼的鋼種

- ●耐熱用鋼
- 低温用鋼
- ●耐候用鋼
- 高抗拉高降伏強度鋼

3.材料特性簡介

●耐熱用細:

此系列低合金鋼含0.5%~9%的鉻及0.5%~1%的鉬。含碳量一般低於 0.20%,具有良好銲接性,但合金有較高的硬化能。鉻有改進耐氧化及 耐蝕性能,而鉬在高温環境下能增加強度,一般所供應的材料均經退火 或正常化及回火處理。鉻鉬鋼已廣泛用在石化工業及蒸汽動力設備等高 温使用環境之領域。

●低温用鋼:

一般的鋼材在低温狀況下強度會增高而延性及韌性均會下降,此為造成 脆性破壞的主要原因。若鋼材要在低温環境下使用,則必須具有優異的 低温韌性。而能符合這種用途所使用的鋼種稱低温用鋼。低合金低温 用鋼是在碳鋼中添加2.5%至3.5%的鎳而改善其低温韌性之鋼材。鎳能 強化肥粒鐵基地,也同時降低Ar3(第三變態點)使有助於晶粒的微細 化。低合金低温用鋼牛產製程上,一般均做正常化處理,但也有經淬 火、回火之調質處理。

● 耐候用鋼:

防止一般鋼材生銹的方法,大致上有兩種:一種是以油漆塗裝或電鍍、 搪瓷等方法塗鍍一或數層耐蝕性材料,將鋼材表面與腐蝕環境隔絕。另 一種就是使用不銹鋼或耐候鋼,即在鋼中加入具有耐腐蝕合金元素的方 法。耐候鋼係添加少量銅、鉻、磷、鎳等合金元素的低合金鋼。在使用 之初也會與一般碳鋼一樣生銹,但再經過一段時間(約一年以上)後, 牛銹的表面會形成緻密穩定的保護膜,可防止鋼材繼續向內部腐蝕。

●高抗拉高降伏強度鋼:

此鋼種添加有強化強度的Mn、Ni、Cr、Mo等合金元素,能增強肥粒 鐵,改善硬化性及有利於控制晶粒的大小。此鋼種於銲後原態下,銲接 金屬便能符合高強度、優良耐蝕性或改善缺口韌性等機械性質之要求。 此鋼材之銲接性良好;其最低降伏強度從70至120ksi,抗拉強度從90 至150ksi。

低合金耐熱鋼銲材選用

鋼種	ASTM / A	SME標準	高 伊 <i>伦</i>	包藥銲線
並門 作里	鋼板	鋼管	電銲條	巴榮竏觨
0.5%鉬鋼	A204 Gr. A,B,C A336 Gr.F1	A209 Gr.T1 A335 Gr.P1	GL76/78A1	GMX 811A1
0.5%鉻-0.5%鉬鋼	A387 Gr.2 Cl.1,2	A213 Gr.T2 A335 Gr.P2	GL86/88B1	
1.25%鉻-0.5%鉬鋼	A387 Gr.12 Cl.1,2 A387 Gr.11 Cl.1,2 A336 Gr.F11	A335 Gr.P11,12	GL86/88B2	GMX 811B2
2.25%鉻-1.0%鉬鋼	A387 Gr.22 Cl.1,2 A336 Gr.F22	A213 Gr.T22 A335 Gr.P22 A182 Gr.F22	GL86/88B3	GMX 911B3
5.0%鉻-0.5%鉬鋼	A387 Gr.5 Cl.1,2	A335 Gr.P5	GL86/88B6	
9.0%鉻-1.0%鉬鋼	A387 Gr.9 Cl.1,2	A335 Gr.P9	GL86/88B8	

耐熱鋼用電銲條

耐熱鋼在銲接時,應注意事項與高張力鋼大致相同。但仍有以下幾點須 特別注意:

1. 銲道間溫度、預熱及後熱處理

低合金耐熱鋼的銲接預熱及後熱温度,可參考下表;至於預熱及後熱寬 度範圍則建議以銲道中心線兩側各約為母材厚度的5倍左右。銲接後, 為了去除銲接部位之殘留應力,須作後熱退火處理。

預熱、銲道間及後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
0.5%鉬鋼	95~110	620±15
0.5%鉻-0.5%鉬鋼 1.0%鉻-0.5%鉬鋼 2.25%鉻-1.0%鉬鋼	160~190	690±15
5.0%鉻-0.5%鉬鋼	180~230	740 ±15
9.0%鉻-1.0%鉬鋼	200~250	740 ±15

註:最高銲道間温度≦350℃。

2. 短電弧銲接

耐熱鋼銲條多屬於低氫系,銲接時應保持短電弧銲接,避免氮及氧氣滲 入電弧中造成氣孔以及合金過度燒損。若需織動,織動幅寬不超過心線 線徑之3倍。銲接時,起弧點應在起銲點後約1~2cm處,起弧後再將電 弧拉回至起銲點開始銲接,如此可避免起銲端氣孔之發生(即一般通稱 的前淮後退起弧法)。

3.其他請參考第23頁軟鋼及高張力鋼用電銲條銲接作業要點

GL76A1/GL78A1

AWS A5.5M E4916(8)-A1 A5.5 E7016(8)-A1 JIS Z 3223 DT1216

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 全熔填銲接金屬中約含有 0.5%Mo °
- 易於通過射線檢測,機械 性能佳。
- 銲接金屬氫含量低,耐龜 裂件良好。

用涂:

● 適用於含0.5%Mo級耐熱 鋼、鑄鋼(如A335-P1、 A336-F1) 之銲接。

全熔填	真銲接金属	屬化學成何	分之一例	(wt%)
_				_

С	Si	Mn	Mo	Fe
0.06	0.46	0.79	0.49	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	後熱處理
N/mm²	N/mm²		℃×1hr
570	615	26	620

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	100~140	150~190	220~270
立仰銲	50~80	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

GL86B1/GL88B1

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 銲接金屬之氫含量極低。
- 全熔填銲接金屬中約含 有0.5%Cr- 0.5%Mo合 金,可使用於550℃以下 之高温環境。
- 易於通過射線檢測,機械 性能佳。

用涂:

● 適用於含0.5% Cr-0.5% Mo鋼材 (如A387-Gr.2 CI.1&2) 之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.06	0.31	0.76	0.55	0.48	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	後熱處理
N/mm²	N/mm²		℃×1hr
600	650	26	690

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~180	220~270
立仰銲	50~80	80~120	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

AWS A5.5M E5516(8)-B2 A5.5 E8016(8)-B2 JIS Z 3223 DT2316(8)

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 銲接金屬之氫含量極低, 耐龜裂性佳。
- 全熔填銲接金屬中約含 有1.1%Cr- 0.5%Mo合 金,可使用於550℃以下 之高温環境。

用涂:

● 適用於含1.25%Cr- 0.5% M o 級 鋼 材 (如 A 3 8 7 -Gr.12 Cl.1&2; A335-Gr.11&12) 之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

	Si				
0.08	0.62	0.80	1.09	0.43	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	後熱處理 ℃×1hr
623	691	20	690

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~180	220~270
立仰銲	50~80	80~120	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

GL96B3/GL98B3

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 銲接金屬之氫含量極低。
- 全熔填銲接金屬中約含有 2.25%Cr-1.0%Mo合金 可使用於550℃以下之高 温環境。

用涂:

適用於含有2.5%Cr、 1.0%Mo級鋼材(如JIS STBA24 , A387 Gr.22) ⇒ 銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.07	0.49	0.66	2.28	1.05	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率	後熱處理 °C×1hr
590	671	22	690

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~180	220~270
立仰銲	50~80	80~120	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

GL86B6/GL88B6

AWS A5.5M E5516(8)-B6 A5.5 E8016(8)-B6

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 銲接金屬之氫含量極低。
- •全熔填銲接金屬中約含 有5.0%Cr- 0.5%Mo合 金,可使用於550℃以下 高温環境。

用涂:

適用於類如ASTM A387 Gr.5及A335 Gr.P5及相 常等級等耐熱鋼材之銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.07	0.65	0.81	4.63	0.50	Bal.

銲接金屬(全銲道)機械性能之一例

 伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	後熱處理 ℃×1hr
527	635	24	740

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~200	220~270
立仰銲	50~80	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

GL86B8/GL88B8

AWS A5.5M E5516(8)-B8 A5.5 E8016(8)-B8

產品特色:

- 低氫系/鐵粉低氫系低合 **金耐熱鋼電銲條。**
- 銲接金屬之氫含量極低。
- 全熔填銲接金屬中約含 有9.0%Cr- 1.0%Mo合 金,可使用於550℃以下 之高温環境。
- 銲接金屬氫含量低, 耐龜 裂件佳。

用涂:

● 適用於類如ASTM A387 Gr.9及A335 Gr.P9及相常 等級耐熱鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.07	0.60	0.63	8.74	0.86	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	後熱處理
N/mm²	N/mm²		℃×1hr
669	749	20	740

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	150~200	220~270
立仰銲	50~80	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前請先以300~350℃乾燥 60分鐘。
 - 2. 參見第72頁低合金耐熱鋼用電銲條 銲接作業要點。

1.預熱、銲道間及後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GMX 811-A1	150±15	620±15
GMX 811B2 \ GMX 911B3	175±15	690±15

註:最高銲道間温度≦350℃。

- 2.使用直流正電極(DC+) 銲接。
- 3.使用適當遮護氣體及流量,如下表所示。

遮護氣體種類	遮護氣體流量 L/min	銲嘴與母材間距離 mm
CO ₂ 或75~80%Ar+CO ₂	20~25	15~25

4.宜使用低電流

為了防止合金元素因劇烈氧化燒損,銲接電流不宜超出產品建議範圍。

5.其他請參考第61頁軟鋼及高張力鋼用包藥銲線銲接作業要點。

耐熱鋼用包藥銲線

GMX811-A1

AWS A5.29M E551T1-A1C A5 29 F81T1-A1C

產品特色:

- 氧化鈦系之包藥銲線。
- ●全熔填銲接金屬中約含有0.5% Mo,銲接金屬在高温下可保有良 好的物件。
- 容易通過射線檢測,機械性能佳。
- ●熔填效率高。

用途:

● 適用於含0.5%Mo級耐熱鋼材之 銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Mo	Fe		
0.04	0.24	1.04	0.51	Bal.		

銲接金屬(全銲道)機械性能之一例					
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %			
611	649	23.3			

	尺寸(mm)及	及電流範圍(A)	
線徑 極性		1.2	1.6
		DC+	DC+
電流	平、橫銲	180~300	200~360
电机	立、仰銲	160~220	180~280
遮護氣體		CO ₂	CO ₂

使用注意事項:

參見第77頁銲接作業要點。

GMX811-B2

AWS A5.29M E551T1-B2C A5.29 E81T1-B2C

產品特色:

- 氧化鈦系之包藥銲線。
- 全熔填銲接金屬中約含有1.25% Cr-0.5%Mo,可用在550℃以下 之高温環境。
- 容易通過射線檢測, 銲接金屬耐裂 性佳。

用途:

● 適用於1.0%Cr-0.5%Mo及 1.25% Cr-0.5% Mo,類如 A335-P12, A355-P11或相同 等級鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
C Si Mn Cr Mo Fe						
0.06	0.50	0.70	1.22	0.57	Bal.	

銲接金屬(全銲道)機械性能之一例						
降伏強度 N/mm² 抗拉強度 N/mm²		延伸率 %	後熱處理 ℃/hr			
604 679		20.2	690			

	尺寸(mm)及	设電流範圍(A)	
線徑 極性		1.2	1.6
		DC+	DC+
電流	平、橫銲	180~300	200~360
电/儿	立、仰銲	160~220	180~280
遮護氣體		CO ₂	CO ₂

使用注意事項:

參見第77頁銲接作業要點。

GMX911-B3

AWS A5.29M 621T1-B3C A5.29 E91T1-B3C

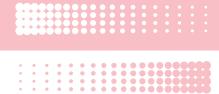
產品特色:

- 氧化鈦系之包藥銲線。
- ●全熔填銲接金屬中約含有2.25% Cr-1.0%Mo,可用在550℃以下 之高温環境級耐熱鋼之銲接。
- ●容易通過射線檢測,銲接金屬耐裂性佳。

用途:

● 適用於2.25%Cr-1%Mo,類如 A387 Gr.22 Cl.1&2或相同等 級鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
C Si Mn Cr Mo Fe							
0.05	0.32	0.51	2.01	1.05	Bal.		


4	銲接金屬(全銲道)機械性能之一例					
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	後熱處理 ℃×1hr		
	578	648	21	690		

尺寸(mm)及電流範圍(A) AC或DC±			
線徑/長度		1.2	1.6
極性		DC+	DC+
電流	平、横銲	180~300	200~360
电机	立、仰銲	160~220	180~280
遮護氣體		CO ₂	CO ₂

使用注意事項:

參見第77頁銲接作業要點。

低溫鋼用電銲條

低温用鋼常適用於LPG船、LPG貯槽、低温設備、海洋結構、以及其他低温使用的工件等。銲接時,銲道間温度需控制在150℃以下。銲接作業要點簡述如下:

1. 預熱、銲道間及後熱處理溫度

若入熱量高、母材較薄或銲道間温度較高時將影響銲道的冷卻速率,銲接金屬韌性會降低。預熱、銲道間、後熱處理温度以及所有銲接參數等需依板厚、鋼種詳細列明於程序書內並確實執行。

低合金低溫用鋼預熱、銲道間及後熱處理溫度對照表

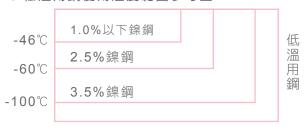
產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×hr)
GL55Ni \ GL86/88C3	95~120	不需要
GL86/88C1	95~110	605±15
GL86/88C2	95~110	605±15

註:1.後熱温度維持時間將隨工件厚度而變化,須參照合約或法規。

2.後熱處理温度必須嚴格控管,否則會使衝擊韌性下降。

2. 宜使用低電流、低入熱量

低温用鋼多為調質鋼或經正常化處理。銲接參數務必嚴格控管,使用低 入熱銲接以確保銲接金屬的合金成份、強度及衝擊韌性等。


3.短電弧銲接

低温用鋼銲條屬於低氫系,銲接時應保持短電弧銲接,避免氮及氧氣滲入電弧中造成氣孔以及合金過度燒損。若需織動,織動幅寬不超過心線線徑之3倍。銲接時,起弧點應在起銲點後約1~2cm處,起弧後再將電弧拉回至起銲點開始銲接,如此可避免起銲端氣孔之發生(即一般通稱的前進後退起弧法)。

4. 銲材選用

鋼種	ASTM	電銲條	包藥銲線
1.0%以下鎳鋼	A537 CI 1 or 2 A516 Gr70	GL55Ni GL86C3 / GL88C3	GMX811Ni1
2.5%鎳鋼	A203 Gr.A or B	GL86C1 / GL88C1	GMX811Ni2 / GMX911Ni2
3.5%鎳鋼	A203 Gr.D or E	GL86C2 / GL88C2	_

5.低溫用鋼使用溫度範圍參考圖

6.其他請參考第23頁軟鋼及高張力鋼用電銲條銲接作業要點。

82

產品

GL86C1/GL88C1

AWS A5.5M E5516(8)-C1 A5.5 E8016(8)-C1 JIS Z 3211 E5516(8)-N5

產品特色:

- 低氫系/鐵粉低氫系低合 金低温用鋼電銲條。
- ●容易通過射線檢測,機械 性能佳。
- 全熔填銲接金屬中約含有2.5%Ni,在温度低至 -60℃之環境下仍能保有 極佳之衝擊韌性。

用途:

適用於低温用鋼材(-60℃) 之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Fe
0.05	0.31	0.82	2.38	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %		後熱處理 ℃×1hr
574	653	27.6	44	620

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第82頁低合金低温鋼用電銲條 銲接作業要點。

GL86C2/GL88C2

AWS A5.5M E5516(8)-C2 A5.5 E8016(8)-C2

產品特色:

- 低氫系/鐵粉低氫系低合 金低温用鋼電銲條。
- 銲接金屬氫含量低,耐龜 裂性佳。
- 全熔填銲接金屬中約含有 3.5%Ni合金,在温度低 至-75℃之環境下仍能保 有極佳之衝擊韌性。

用途:

適用於低温用鋼材(-75℃)之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Fe
0.06	0.46	1.12	3.20	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值	後熱處理
N/mm²	N/mm²		(-75℃)J	℃×1hr
677	742	24	44	620

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前請先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第82頁低合金低温鋼用電銲條 銲接作業要點。

GL86C3/GL88C3

AWS A5.5M E5516(8)-C3 A5.5 E8016(8)-C3 JIS Z 3211 E5516(8)-N2

產品特色:

- 低氫系/鐵粉低氫系低合 金低温用鋼電銲條。
- ●容易通過射線檢測,機械 性能佳。
- ●全熔填銲接金屬中約含有1.0%Ni,在温度低至-40℃之環境下仍能保有極佳之衝擊韌性。

用涂:

適用於低温用鋼材(-40℃) 之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Fe
0.06	0.60	0.84	0.86	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值	後熱處理
N/mm²	N/mm²		(-40℃) J	℃×1hr
546	620	24.2	80	未規定

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第82頁低合金低温鋼用電銲條 銲接作業要點。

銲接作業要點

1.預熱、銲道間及後熱處理

低合金低溫用鋼預熱、銲道間及後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GMX 811-Ni1	150±15	不需要
GMX 811-Ni2 GMX 911-Ni2	150±15	不需要

- 2.使用直流正電極(DC+) 銲接。
- 3.使用適當遮護氣體及流量,如下表所示。

遮護氣體種類	遮護氣體流量 L/min	銲嘴與母材間距離 mm
CO ₂ 或75~80%Ar+CO ₂	20~25	15~25

4.宜使用低電流、低入熱量

低温用鋼多為調質鋼或經正常化處理之鋼材。銲接參數須嚴格控管,務 必使用低入熱銲接以確保銲接金屬的合金成份、強度及衝擊韌性等。

5.其他請參考第61頁軟鋼及高張力鋼用包藥銲線銲接作業要點。

GMX811-Ni1

AWS A5.29M E551T-Ni1C A5 29 F81T1-Ni1C

產品特色:

- 氧化鈦系之包藥銲線。
- 全熔填銲接金屬中約含1.0%Ni, 在温度低至-30℃之環境下仍能保 有極佳之衝擊韌性。。
- 容易通過射線檢測, 銲接金屬耐裂 性能佳。

用涂:

● 適用於A226、A235、A236或 LPG貯槽等低温鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
C Si Mn Ni Fe						
0.04	0.42	0.82	0.95	Bal.		

1	銲接金屬(全銲道)機械性能之一例					
	降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30 ℃) J		
	618	650	24.0	50		

尺寸(mm)及電流範圍(A) DC±				
線徑		1.2	1.6	
極性		DC+	DC+	
= ∴	平、橫銲	180~300	200~350	
電流	立、仰銲	160~220	180~280	
遮護氣體		CO ₂	CO ₂	

使用注意事項:

- 1.母材預熱温度約150℃,銲接前確實做好母材之清潔。
- 2. 預熱、銲道間、後熱處理温度以及所有銲接參數等需依板厚、鋼種詳細列明於程序書內 並確實執行。
- 3. 參見第87頁低温鋼用包藥銲線銲接作業要點。

GMX811-Ni2

AWS A5.29M E551T1-Ni2C A5.29 E81T1-Ni2C

產品特色:

- 氧化鈦系之包藥銲線。
- •全熔填銲接金屬中約含有 2.4%Ni,在温度低至-40℃之環 境下仍能保有極佳之衝擊韌性。。
- 容易通過射線檢測, 銲接金屬耐裂 性能佳。

用涂:

● 適用於A226、A235、A236或 LPG貯槽等低温鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
C Si Mn Ni Fe						
0.06	0.43	1.05	2.38	Bal.		

降伏強度 抗拉強度 延伸率 衝擊值 N/mm² % (-40 °C) J		銲接金屬(全銲道)機械性能之一例						
70 (100)		11111111111	3, 03=3=72<	,011				
	ŀ	543	608	27.8	78			

尺寸(mm)及電流範圍(A) DC±					
線	徑	1.2	1.6		
極	性	DC+	DC+		
電流	平、橫銲	180~300	200~350		
	立、仰銲	160~220	180~280		
遮護	氣體	CO ₂	CO ₂		

- 1.母材預熱温度約150℃,銲接前確實做好母材之清潔。
- 2. 預熱、銲道間、後熱處理温度以及所有銲接參數等需依板厚、鋼種詳細列明於程序書內 並確實執行。
- 3. 參見第87頁低温鋼用包藥銲線銲接作業要點。

GMX911-Ni2

AWS A5.29M E621T1-Ni2C A5 29 F91T1-Ni2C

產品特色:

- 氧化鈦系之包藥銲線。
- 全熔填銲接金屬中約含有2.25% Ni,在温度低至-40℃之環境下仍能保有極佳之衝擊韌性。
- ●容易通過射線檢測、銲接金屬耐裂性能佳。

用途:

● 適用於低温用鋼或液化天然氣貯 槽等低温用鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
C Si Mn Ni Mo Fe						
0.03	0.18	Bal.				

銲接金屬(全銲道)機械性能之一例					
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-40℃) J		
659	684	22.6	54		

尺寸(mm)及電流範圍(A) DC±					
綡	經	1.2	1.6		
極	性	DC+	DC+		
電流	平、横銲	180~280	200~350		
■∭	立、仰銲	160~220	180~280		
遮護氣體		CO_2	CO_2		

使用注意事項:

- 1.母材預熱温度約150℃,銲接前確實做好母材之清潔。
- 2.預熱、銲道間、後熱處理温度以及所有銲接參數等需依板厚、鋼種詳細列明於程序書內 並確實執行。
- 3.參見第87頁低温鋼用包藥銲線銲接作業要點。

耐候鋼用電銲條

產品介

奸汝 IF 未 女

低合金耐候鋼用銲材選用					
ASTM/JIS	G3114標準	電銲條	包.藥銲線		
ASTM	JIS	电奸床	已樂軒級		
A709 Gr. 36 A709 Gr. 50W A588 A242	.709 Gr. 50W SMA 400W A588 SMA 490P		GMX 811-W2		
A588 A709 Gr. 50W	SMA 570P SMA 570W	GL88W2			

耐候鋼在銲接時,應注意事項與高張力鋼大致相同。但仍有以下幾點須 特別注意:

1.預熱、銲道間與後熱處理

低合金耐候鋼的銲接預熱及後熱温度,可參考下表。預熱操作方式,在 銲接物件結構較小時,可做全體之預熱。在大型結構物,則以銲接線中 心位置開始,約為母材板厚5倍左右範圍以加熱器作局部的預熱。銲接 後之應力消除熱處理是否需要,必須依據合約或施工規範執行。

低合金低溫用鋼預熱、銲道間與後熱處理溫度對照表

產品名稱	銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GL78W1	95~120	不需要
GL88W2	95~120	1

2. 宜使用低電流、低入熱量銲接

為了防止合金元素因劇烈氧化燒損,銲接電流不宜超出產品適用建議範圍。

3. 短電弧銲接

耐候鋼銲條多屬低氫系,銲接時應儘可能壓低並維持短電弧施工,避免 氮及氧氣滲入電弧中造成氣孔以及合金過度燒損。若需織動,織動幅寬 不超過心線線徑之3倍。銲接時,起弧點應在起銲點後約1~2cm處,起 弧後再將電弧拉回至起銲點開始銲接,如此可避免起銲端氣孔之發生(即一般通稱的前進後退起弧法)。

4.其他請參考第23頁軟鋼及高張力鋼用電銲條銲接銲接作業要點。

產品特色:

- 鐵粉低氫系490N/mm²級 低合金耐候鋼用電銲條。
- 銲接金屬中含有Ni、 Cr、及Cu,耐候性能優良。
- ●容易通過射線檢測,機械 性佳。

用涂:

● 適用於高張力耐候鋼(COR-TEN 50A、50B) 及高耐候鋼(COR-TEN)及SMA 50級高張 力鋼等耐候結構物之銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Cu	Fe
0.06	0.65	0.53	0.24	0.29	0.54	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值
N/mm²	N/mm²		(- 20 ℃)J
513	604	28.7	114

尺寸(mm)及電流範圍(A)

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	70~100	90~140	150~200	220~270
立仰銲	60~90	80~110	120~150	

- ◎使用注意事項: 1. 銲條使用需請先以300~350℃ 乾燥 60分鐘。

GL88W2

AWS A5.5M E5518-W2 / A5.5 E8018-W2 JIS Z 3214 DA5816W

產品特色:

- 鐵粉低氫系550N/mm²級 低合金耐候鋼用電銲條。
- 銲接金屬中含有Ni、Cr 及Cu,耐候性能優良。
- ●容易通過射線檢測,機械 性佳。

用途:

●適用於550N/mm²級耐候 性鋼如COR-TEN 60及 SMA 58級高張力鋼等耐 候結構物之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Cu	Fe
0.06	0.49	0.70	0.51	0.55	0.51	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值
N/mm²	N/mm²		(-20℃)J
570	660	25	102

尺寸(mm)及電流範圍(A)

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	70~100	90~140	150~200	220~270
立仰銲	60~90	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用需請先以300~350℃ 乾燥 60分鐘。
 - 2.參見第92頁低合金耐候鋼用電銲條 銲接作業要點。

耐候鋼用包藥銲線

銲接作業要點

1. 銲道間溫度、預熱及後熱處理

低合金耐候用鋼預熱、銲道間及後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GMX 811-W2	150 ± 15	不需要

2.清除母材之表面

母材表面之油汙、銹蝕務必清除乾淨,才能避面銲接缺陷如氣孔或針孔發生。

- 3.使用直流正電極(DC+) 銲接。
- 4.使用適當遮護氣體及流量,如下表所示。

遮護氣體種類	遮護氣體流量 L/min	銲嘴與母材間距離 mm
CO ₂ 或75~80%Ar+CO ₂	20~25	15~25

5.宜使用低電流

為了防止合金元素因劇烈氧化燒損,銲接電流不宜超出產品建議範圍。

6.其他請參考第61頁軟鋼及高張力鋼用包藥銲線銲接作業要點。

GMX 811-W2

AWS A5.29M E551T1-W2C A5 29 F81T1-W2C

產品特色:

- 氧化鈦系之包藥銲線。
- 銲接金屬中含Cr、Cu及Ni,耐候性極佳。
- ●容易通過射線檢測,銲接金屬耐裂性能佳。

用途:

● 適用於ASTM A588、A242等 耐候鋼母材及其他耐候鋼構件之 銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
C Si Mn Cr Ni Cu Fe							
0.05	0.38	0.81	0.49	0.58	0.56	Bal.	

銲接金屬(全銲道)機械性能之一例					
降伏強度 N/mm²	抗拉強度 N/mm²	延伸率 %	衝擊值 (-30℃) J		
607	650	23.1	34		

尺寸(mm)及電流範圍(A)				
線	徑	1.2	1.6	
極性		DC+	DC+	
電流	平、横銲	180~300	200~360	
■川	立、仰銲	160~220	180~280	
遮護氣體		CO ₂	CO ₂	

使用注意事項:

- 1.母材需施以150±15℃預熱,銲接前確實做好母材之清潔。
- 2. 施銲時需注意良好之防風屏障。
- 3.參見第95頁耐候鋼用包藥銲線銲接作業要點。

特殊用途低合金鋼(高抗拉高降伏強度鋼最常見) 銲接金屬含氫量極低、低温衝擊韌性(-50℃)極佳。多適用於高強度或軍事結構物鋼材,類如HY80及HY100等鋼種。

1. 預熱、銲道間溫度及後熱處理

低合金高抗拉高降伏強度鋼的銲接預熱及後熱温度可參考下表。預熱操作方式,在銲件較小時,可做全體之預熱。在大型結構物,則以銲接線中心位置開始,約為母材厚度5倍左右範圍以加熱器作局部的預熱。

低合金高抗拉強度高降伏強度鋼預熱、銲道間溫度與後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GL98M \ GL108M GL118M \ GL128M	95~120	不需要

2. 宜使用低電流、低入熱量銲接

為了防止合金元素因劇烈氧化燒損,宜使用適銲電流範圍內之低限電流 銲接。

3.短雷弧銲接

高抗拉高降伏強度鋼銲條多屬於低氫系,銲接時應保持短電弧銲接,避免氮及氧氣滲入電弧中造成氣孔以及合金過度燒損。若需織動,織動幅寬不超過心線線徑之3倍。銲接時,起弧點應在起銲點後約1~2cm處,起弧後再將電弧拉回至起銲點開始銲接,如此可避免起銲端氣孔之發生(即一般通稱的前進後退起弧法)。

4.其他請參考第23頁軟鋼及高張力鋼用電銲條銲接作業要點。

GL98M

AWS A5.5M E6218M / A5.5 E9018M JIS Z3211 E6218-N3M1

產品特色:

- 鐵粉低氫系低合金高強度 鋼電銲條。
- 電弧穩定、銲濺物少,適 合全姿勢銲接。
- ●容易通過射線檢測,機械 性佳。
- 銲條抗吸濕性能佳, 銲接
 金屬耐龜裂性良好。

用涂:

● 適用於620N/mm²級低合 金鋼或同等級高張力鋼之 壓力容器及結構物的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Мо	Fe
0.06	0.74	1.15	0.03	1.59	0.01	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²		(-50℃)J
613	687	26.4	61

尺寸(mm)及建議適正電流(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第98頁銲接作業要點。

GL108M

AWS A5.5M E6918M / A5.5 E10018M JIS Z3211 E6918-N3M2

產品特色:

- 鐵粉低氫系低合金高強度 鋼電銲條。
- ■電弧穩定、適合全姿勢銲 接。
- ●容易通過射線檢測,機械 性佳。
- 銲條抗吸濕性能佳, 銲接 金屬耐龜裂性良好。

用途:

● 適用於690N/mm²級低合 金鋼或同等級高張力鋼之 壓力容器及結構物的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Мо	Fe
0.06	0.32	0.91	0.31	1.46	0.27	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率	衝擊值
N/mm²	N/mm²		(-50℃)J
650	715	26	60

尺寸(mm)及電流範圍(A) AC或DC±

•		` '	
線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 參見第98頁銲接作業要點。

GL118M

AWS A5.5M E7618M / A5.5 E11018M JIS Z3211 E7618-N4M2

產品特色:

- 鐵粉低氫系低合金高強度 鋼電銲條。
- ■電弧穩定、適合全姿勢銲接。
- ●容易通過射線檢測,機械 性佳。
- 銲條抗吸濕性能佳,銲道 耐龜裂性良好。

用途:

● 適用於760N/mm²級低合金 鋼或同等級高張力鋼之壓 力容器及結構物的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Мо	Fe
0.06	0.57	1.61	0.26	1.78	0.41	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值
N/mm²	N/mm²		(-50℃) J
684	843	21.8	55

尺寸(mm)及建議適正電流(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2.參見第98頁銲接作業要點。

GL128M

AWS A5.5M E8318M / A5.5 E12018M JIS Z3211 E8318-N4C2M2

產品特色:

- 鐵粉低氫系低合金高強度 鋼電銲條。
- 電弧穩定、銲濺物少,適 合全姿勢銲接。
- ●容易通過射線檢測,機械 性佳。
- 銲條抗吸濕性能佳, 銲道 耐龜裂性良好。

用途:

● 適用於830N/mm²級低合 金鋼或同等級高張力鋼之 壓力容器及結構物的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Ni	Мо	Fe
0.06	0.43	1.67	0.63	2.22	0.43	Bal.

銲接金屬(全銲道)機械性能之一例

降伏強度	抗拉強度	延伸率 %	衝擊值
N/mm²	N/mm²		(-51℃)J
825	958	18.2	62

尺寸(mm)及電流範圍(A) AC或DC±

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	150~200	220~270
立仰銲	80~110	120~150	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

2. 參見第98頁銲接作業要點。

高抗拉高降伏強度鋼用包藥銲線

銲接作業要點

1.預熱、銲道間及後熱處理溫度。

低合金高抗拉強度及高降伏強度鋼預熱, 銲道間及後熱處理溫度對照表

產品名稱	預熱及銲道間溫度 (℃)	後熱溫度×時間 (℃×1hr)
GMX 101-K3	150±15	不需要

- 2.使用直流正電板(DC+) 銲接。
- 3.使用適當遮護氣體及流量,如下表所示。

遮護氣體種類	遮護氣體流量 L/min	銲嘴與母材間距離 mm
CO ₂ 或75~80%Ar+CO ₂	20~25	15~30

4. 宜使用低電流

為了防止合金元素因劇烈氧化燒損,宜使用較低之銲接電流。

5.其他請參考第61頁軟鋼及高張力鋼用包藥銲線銲接作業要點。

GMX101-K3

AWS A5.29M E691T1-K3C A5.29 E101T1-K3C

產品特色:

- 全姿勢銲接用之低合金高強度鋼包 藥銲線。
- 全熔填銲接金屬中約含有2.0%Ni-0.5%Mo,適用於低合金高強度鋼 材之銲接。
- 容易通過射線檢測, 銲接金屬耐裂 性佳。

用途:

● 適用於類如HY80或相同等級鋼材之銲接。

全熔填銲接金屬化學成份之一例 (wt%)								
С	C Si Mn Ni Mo Fe							
0.05	0.05 0.34 1.27 1.89 0.49 Bal.							

	銲接金屬(全銲道)機械性能之一例					
降伏強度 N/mm²		抗拉強度 N/mm²	延伸率 %	衝擊值		
	736 767		20.3	48		

尺寸(mm)及電流範圍(A)									
約	徑	1.2	1.6						
桓	姓	DC+ DC+							
雨法	平、横銲	180~300	200~350						
電流	立、仰銲	160~220	_						
遮護	氣體	CO ₂	CO ₂						

- 1.母材需施以150±15℃預熱,銲接前確實做好母材之清潔。
- 2.入熱量過大時,衝擊韌性會下降,須注意電流及銲道間温度之控制。
- 3. 參見第102頁銲接作業要點。

不銹鋼

材料特性簡介

SUS:第一個S代表 Steel,U代表 Special Use,最後的S代表 Stainless。

不銹鋼是以在表面形成強固的氧化鉻薄膜來防止材料本身進一步的氧化。但是Cr的含量若不足12%則效果不明顯,原因是無法形成緻密的保護膜。此外當C含量越高時越容易生銹,因為C易與Cr結合形成碳化鉻析出,導致Cr的貧乏而使耐蝕性劣化,所以不銹鋼的碳含量通常都限制在0.1%以下,甚至控制在0.03%以下。

不銹鋼在使用上可依耐蝕、耐高温強度或耐低温韌性等用途來選用。

若以成份及組織來看,常見不銹鋼可分成以下三類:

13Cr 系不銹鋼, 麻田散鐵系, 代表性的鋼種為 SUS410、SUS420

18Cr 系不銹鋼, 肥粒鐵系, 代表性的鋼種為 SUS430

18-8 系不銹鋼,奧斯田鐵系,代表性的鋼種為 SUS304

若以耐氧化性來探討,奧斯田鐵系 > 肥粒鐵系 > 麻田散鐵系 若以強度來探討, 麻田散鐵系 > 肥粒鐵系 > 奧斯田鐵系

種類	淬火性	耐氧化性	高溫強度	低溫韌性	銲接性	磁性
奧斯田鐵系	無	優	優	優	優	無
肥粒鐵系	無	優	較差	較差	較差	有
麻田散鐵系	有	較差	好	較差	較差	有

18-8是不銹鋼的主力,其耐蝕性佳主要原因如下:

- ●因為Ni元素的存在,Ni原子間隔與母材的鐵原子間隔非常相近,兩者可以互相置換(原子間隔差異越大,兩者的附著性就會越差),而且可使Cr的氧化膜更緊密的附著在母材上。
- ●當Ni含量達到8%時,金相會變成不易生銹的奧斯田鐵組織,原因是 奧斯田鐵為單一相態之多角型晶粒結構,因此晶界沒有被入侵空間, 相對不易生銹。
- 奧斯田鐵組織通常需加熱到變態點以上的高温才會形成,但Ni元素的添加可使金相在室温時仍維持面心立方的奧斯田鐵組織。

簡

銲接性與金相組織的關係

麻田散鐵系不銹鋼

- SUS410或SUS420等麻田散鐵系不銹鋼,約含有Cr11~13.5%;與 低碳鋼相同,具感磁性,銲接時有偏弧的顧慮;電阻較一般碳鋼高、 熱傳導係數低,快速冷卻下會形成脆化組織。
- 為避免HAZ熱影響區產生硬脆組織,容易受收縮應力及氫的滲入而產生龜裂,故需銲前預熱及銲道間温度的控管,並根據母材的碳含量,同時亦需以銲件大小、拘束程度及銲材化學成份為考量。
- 一般銲件需施以200~400℃預熱及保持銲道間温度,並施以700~800℃後熱使其緩慢冷卻(預熱目的在緩和冷速,使銲接金屬及HAZ冷卻均匀,減少收縮應力及使氫原子有足夠時間逸出。),以得到較佳延性的銲接金屬。

肥粒鐵系不銹鋼

- SUS 430 肥粒鐵不銹鋼,約含有Cr15~18%,含量多高於麻田散鐵系,且C含量多限制在0.12%以下,若C含量高達0.20%時,則成為AISI 431的麻田散鐵不銹鋼。
- ●鋼質軟、延性良好、具有良好之加工性與耐蝕性且不會因加工或銲接 而硬化;與碳鋼及麻田散鐵系不銹鋼類似,亦稍有感磁性,銲接時也 有偏弧的顧慮。
- 銲接熱影響區當受熱到熔點附近,會造成晶粒粗大而脆化。銲前需施以150℃的預熱。銲接過程需避免475℃的脆化温度,銲件不得過熱。
- ●肥粒鐵系不銹鋼因金相不會變態,不可能做晶粒細微化處理。當受熱至930°以上時,肥粒鐵晶粒會粗大,且因散失延性及韌性而脆化。
- ●肥粒鐵系不銹鋼可對應的標準銲材不多,通常多依耐腐蝕特性及線膨 脹係數選用309、310及312等奧斯田鐵系不銹鋼銲接。

奧斯田鐵系不銹鋼

- ●奥斯田鐵系不銹鋼多具有良好的耐蝕性、加工性、銲接性,用 途廣泛。主要為300系列(少部份為200系列)不銹鋼(約含Cr 15~32%、Ni 8~37%),幾乎佔不銹鋼用途的90%以上。SUS304 (18Cr-8Ni鋼)為最常見的鋼種之一。
- 奥斯田鐵系不銹鋼不論低温或高温均能保持足夠的強度和耐蝕性, 銲件多在銲後原態下使用。
- 奥斯田鐵系不銹鋼不感磁,銲接時沒有偏弧的顧慮。310、320及330鋼材全為奧斯田鐵,完全不感磁;312鋼材銲接金屬中含有約25%肥粒鐵而有相當明顯的感磁性,304(L)、309(L)及347等因含少量的肥粒鐵而具微感磁性;合金成份較低的完全退火狀態下的奧斯田鐵系不銹鋼,例如304鋼材,可能會因冷作加工而具微磁性。
- ●與一般碳鋼、低合金鋼或400系列不銹鋼相較,奧斯田鐵系不銹鋼熔點較低、電阻較高以及熱傳導係數低(約為一般碳鋼的1/3,容易造成銲接區熱量的集中),但熱膨脹係數卻高出約50%(容易受銲接熱而變形),必須以低入勢銲接。
- ■因沒有淬火硬化的問題,銲接性最佳。但是若在550~800℃的温域停留,會因碳化鉻的析出而劣化,使銲件失去抗氧化能力。銲接時選用低碳含量的銲材且採用低入熱量銲接,可大為降低碳化鉻析出的現象。

除了上述三大類還有析出硬化型不銹鋼及雙相不銹鋼

- ●析出硬化型:主要成份為鉻及鎳元素(Cr約含17%;Ni約含4%), 為600系列不銹鋼(例如SUS 630)。
- ●雙相不銹鋼:主要成份為鉻、鎳及鉬元素(Cr約含22%;Ni約含9%;Mo約含3%),金相中同時含有肥粒鐵及奧斯田鐵組織,故稱雙相不銹鋼(例如 Alloy 2205)。

母材與適用銲材選用表

母材	規格成份%	電銲條	MIG / TIG	包藥銲線	潛弧銲線
过机	况作的人们了70				
304	18Cr-8Ni	G308,	GM308	GMX308L,	GS308
		G308M	GT308	GMX308L-O	GS308L
304L	18Cr-8Ni-	G308L,	GM308L	GMX308L,	GS308L
	低碳	NT308L	GT308L	GMX308L-O	
309S	23Cr-12Ni	G309,	GM309	GMX309L,	GS309
		G309L,	GT309	GMX309L-O	GS309L
310S	25Cr-20Ni	G310	GM310		
			GT310		
312	30Cr-9.5Ni	G312	GM312		
	000.010.11		GT312		
316	18Cr-8Ni-	G316	GM/GT316	GMX316L,	GS316
0.0	2.5Mo		31111 3 1 3 1 3	GMX316L-O	GS316L
316L	18Cr-8Ni-	G316L	GM316L	GMX316L,	GS316L
OTOL	2.5Mo-低碳	00102	GT316L	GMX316L-O	000101
317	18Cr-13Ni-	G317	GM317		
017	3.5Mo	0017	GT317		
347	18Cr-8Ni-	G347	GM347		
347	Nb	G547	GT347		
224	100= 0NI; Ti	C247	GM347		
321	18Cr-8Ni-Ti	G347	GT347		
410	120-	C410	GM410		
410	13Cr	G410	GT410		
400	400-	0400	GM430		
430	18Cr	G430	GT430		

註:目錄中電銲條產品的G307及G307M用途以錳鋼與碳鋼鑄件或鍛件之間 的銲接為主,不使用在不銹鋼的銲接。

異質母材適用銲材選用表

母材 ASTM, AISI UNS編號	201 202	304 304L	309 309S	310 310S	317 316	317L 316L 316Ti	321 347	409 430 446	410 420	碳鋼 及低合 金鋼
201 202	347 308L	347 308L	347 309MoL	347 310 309MoL	318 347	308L 316L 347	347	347 309MoL	309MoL 309L	309MoL
304 304L		347 308L	347 309MoL 308L 309L	347 310 308L	347 318 308L	347 318 308L	347 308L	309MoL 309L	309MoL	309MoL 309L
309 309S			309MoL 309L	309MoL 309L 310	309MoL 318 316 309L	309L 316L 318	347 309MoL		309MoL 309L	309MoL 309L
310 310S				310	316L 318 310	316L 318 310	347 310	309MoL 309L 316L	309MoL 309L 310	309MoL 309L 310
317 316					318 316L	316L 318	347 316L	309MoL 309L	309MoL 309L	309MoL 309L
317L 316L 316Ti						316L 318	347 316L	309MoL 309L	309MoL 309L	309MoL 309L
321 347							347	309MoL 309L	309MoL 309L	309MoL 309L
409 430 446								309L 309MoL	309MoL 309L	309MoL 309L
410 420									410 309MoL 309L	309MoL 309

銲接作業要點

- 1. 宜使用較低電流施銲,以降低母材之入熱量與稀釋量,並可避免熱影 響區碳化鉻析出的敏化現象。
- 2. 若銲接電流高於摘銲電流範圍內的上限電流,易造成銲條紅熱、心線 膨脹及被覆脱落。
- 3. 官使用短電弧施銲,可避免氮及氫氣滲入電弧中造成氣孔、銲濺物增 加甚至改變合金成份及銲接金屬組織。
- 4.若需織動銲接,寬度不宜超過心線線徑之3倍。
- 5.由於銲接變形量大,必要時宜使用治具、夾具或其他適當銲接順序以 控制變形量。
- 6. 電銲條使用前需先以200~250℃乾燥60分鐘, 銲接部位之開槽或接 頭需確實做好銲前清潔,銲接後殘留之銲濺物亦需清除。
- 7. 所有銲接參數諸如開槽型式、板/管厚度、適用電流等須依據銲接程 序書。
- 8.預熱與銲道間温度控管可參考下表

	預熱溫度	銲道間溫度
奧斯田鐵系	15 ℃ (60 °F)	150° C (300 °F)
麻田散鐵系	200°C (400°F)	310°C (600°F)
肥粒鐵系	150° C (300 °F)	260 °C (500 °F)

9. 電流極性的説明:

不銹鋼電銲條

DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN (DC-): 為直流負電極, 銲條銲線或電極接負極, 又稱作

直流正極性(DCSP)。

產品特色:

- ●含錳量較308高,為全奧 斯田鐵組織。
- 易加工硬化、無磁性。
- 銲接金屬耐龜裂性良好、 銲渣剝離容易、銲濺物 少。
- 電弧安定,作業性佳。

用途:

適用於錳鋼與碳鋼鑄件或 鍛件之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.08	0.40	4.25	9.8	19.62	0.70	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
630	42

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.0/250	2.6/300	3.2/350	4.0/350
平銲	30~50	60~85	85~120	115~150
立仰銲	30~50	50~75	75~105	95~120

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業要點。

產品特色:

- 石灰氧化鈦系不銹鋼電銲 條。
- 全熔填銲接金屬中約含有 19%Cr、9%Ni,為奧斯田 鐵組織。
- 銲渣剝渣容易、銲濺物 少。
- 耐裂性及耐蝕性良好。

用途:

● 適用於SUS 304,302, 305等不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe	
0.04	0.81	0.77	9.70	19.19	0.03	Bal.	

銲接金屬(全銲道)機械性能之一例

-132 = 120 (===1 10	/ 100 100 1 11 100 1 11
抗拉強度 N/mm²	延伸率
N/mm ⁻	%
576	45.2

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.0/250	2.6/300	3.2/350	4.0/350	5.0/350
平銲	30~50	60~85	85~120	115~150	140~180
立仰銲	30~50	50~75	75~105	95~130	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業要點。

G307M

AWS A5.4 E307-26 JIS Z 3221 ES307-26

產品特色:

- 含錳量較308高,為全奧斯 田鐵組織。
- 以軟鋼為心線,可以較高電流施銲,而無一般不銹鋼心線容易發紅的顧慮。
- 銲接金屬耐龜裂性良好、 銲渣剝離容易、銲濺物 小。

用途:

適用於錳鋼與碳鋼鑄件或 鍛件之間的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.04	0.53	3.74	9.30	18.80	0.75	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
618	40

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450	
平銲	100~140	150~190	200~270	
立仰銲	80~110	120~160	160~190	

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業要點。

G308L

AWS A5.4 E308L-16 JIS Z 3221 ES308L-16 CNS E308L-16

產品特色:

- 低碳石灰氧化鈦系不銹鋼 電銲條。
- 電弧穩定、銲渣剝離容易、銲濺物少。
- 銲道美觀、耐裂性及耐蝕 性良好。

用途:

● 適用於低碳18Cr-8Ni 不銹鋼(SUS304或 304L)之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.03	0.80	0.66	9.80	19.3	0.02	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
556	47.7

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.0/250	2.6/300	3.2/350	4.0/350	5.0/350
平銲	30~50	60~85	85~120	115~150	140~180
立仰銲	30~50	50~75	75~105	95~130	_

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業要點。

G308M

AWS A5.4 E308-26 JIS Z 3221 ES308-26 CNS E308-16

產品特色:

- 高效率不銹鋼電銲條,為 奧斯田鐵組織。
- 以軟鋼為心線,可以較高 電流施銲,而無一般不銹 鋼心線容易發紅的顧慮。
- 電弧安定,作業性以平及 **横**銲為主。

用途:

● 適用於SUS 304.302. 305等不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

ſ	С	Si	Mn	Ni	Cr	Fe
	0.05	0.56	0.69	9.80	19.10	Bal.

銲接金屬(全銲道)機械性能之一例

	,
抗拉強度 N/mm²	延伸率
585	42

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	110~150	150~190	200~270

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業 要點。

產品特色:

• 辛熔填銲接金屬中約含有 23%Cr、13%Ni,為低 碳級不銹鋼電銲條。

G309L

- 奥斯田鐵組織中含適量肥 粒鐵, 龜裂感受性極低。
- 銲接金屬耐熱及耐蝕性 佳。

用涂:

- SUS 309L不銹鋼。
- 碳鋼和不銹鋼(低碳)。
- 硬化性合金鋼和不銹鋼(低碳)。
- 護面鋼在不銹鋼(低碳) 與碳鋼(或其他合金鋼) 之界面層的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

AWS A5.4 E309L-16 JIS Z 3221 ES309L-16 CNS E309L-16

С	Si	Mn	Ni	Cr	Fe
0.03	0.72	1.20	13.40	23.70	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
570	39

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.0/250	2.6/300	3.2/350	4.0/350	5.0/350
平銲	40~60	60~85	85~120	115~150	150~200
立仰銲	_	50~75	75~105	95~120	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

G309

AWS A5.4 E309-16 JIS Z 3221 ES309-16 CNS E309-16

產品特色:

- 全熔填銲接金屬中約含有 23%Cr、13%Ni不銹鋼電 **銲條**。
- 奥斯田鐵組織中含滴量肥 粒鐵, 龜裂感受性極低。
- 銲接金屬耐熱及耐蝕性 佳。

用涂:

- SUS 309S不銹鋼。
- 碳鋼和不銹鋼。
- 硬化性合金鋼和不銹鋼。
- 護面鋼在不銹鋼與碳鋼(或其他合金鋼)之界面層 的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe
0.05	0.72	1.20	13.40	23.70	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
612	37

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~120	

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業 要點。

G309MoL

AWS A5.4 E309LMo-16 JIS Z 3221 ES309LMo-16 CNS E309MoL-16

產品特色:

- 石灰氧化鈦系不銹鋼電銲 條。
- 與309L相較, 全熔填銲接 金屬中另含有約2.5%Mo, 故有良好的強度、耐裂 性、耐酸性以及耐熱性。
- 肥粒鐵含量較高, 龜裂感 受性較低。

用途:

- SUS316、SUS316L護 面綱在不銹綱 (低碳)與 碳鋼(或其他合金鋼)之 界面層的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Mo	Fe
0.03	0.63	1.25	12.94	22.89	2.03	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度 N/mm²	延伸率 %
650	40

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	50~85	85~120	115~150	150~200
立仰銲	50~80	75~105	95~120	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

產品特色:

- 為石灰氧化鈦系不銹鋼電 銲條。
- 全熔填銲接金屬中約含有 25%Cr、20%Ni,為全 奥斯田鐵組織,耐蝕性、 耐熱性佳、韌性亦優於硬 化性較高的13%Cr鋼。

用涂:

- SUS 310不銹鋼。
- Cr-Mo鋼。
- 13%Cr錙。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.10	0.33	1.63	21.73	27.28	0.07	Bal.

銲接金屬(全銲道)機械性能之一例

	'
抗拉強度 N/mm²	延伸率 %
569	38.8

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
			115~150	
立仰銲	50~75	75~105	95~130	—

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業要點。

產品特色:

●全熔填銲接金屬中約含有18%Cr、12%Ni、 2%Mo,為石灰氧化鈦系 不銹鋼電銲條。

G316

- ●奥斯田鐵組織,耐蝕性、 耐熱性、耐裂性良好。
- 銲接金屬中因含有Mo元素,耐隙間腐蝕性佳。

用途:

• 耐酸、耐熱要求高的 SUS316不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.04	0.70	0.85	12.29	18.0	2.37	Bal.

銲接金屬(全銲道)機械性能之一例

-132 = 120 (===1 10	/ 150 150 1 <u> </u>
抗拉強度	延伸率
N/mm ²	%
580	41.2

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業要點。

G312

AWS A5.4 E312-16 JIS Z 3221 ES312-16

AWS A5.4 E310-16 JIS Z 3221 ES310-16 CNS E310-16

產品特色:

- 全熔填銲接金屬中約含有 29%Cr、9%Ni,奥斯田 鐵組織中的肥粒鐵含量較 高。
- 含Cr量高,耐氧化性和耐 裂性均佳。

用途:

- 29%Cr-9%Ni不銹鋼鑄件 的銲接。
- 不銹鋼與低合金鋼、高Ni 不銹鋼等異種金屬的銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe
0.10	0.80	1.11	10.26	28.8	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
819	23.3

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業要點。

G316L

AWS A5.4 E316L-16 JIS Z 3221 ES316L-16 CNS E316L-16

AWS A5.4 E316-16 JIS Z 3221 ES316-16 CNS E316-16

產品特色:

- 全熔填銲接金屬中約含有18%Cr、12%Ni、 2%Mo,為石灰氧化鈦系 低碳不銹鋼銲條。
- ●奥斯田鐵組織,耐蝕性、耐熱性、耐裂性及耐粒間腐蝕較316佳。
- 銲接金屬中因含有Mo元素,耐隙間腐蝕性佳。

用途:

• 耐酸、耐熱要求高的 SUS316L不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.02	0.71	0.63	12.38	17.91	2.37	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
560	41.7

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.0/300	2.6/300	3.2/350	4.0/350	5.0/350
平銲	40~60	60~85	85~120	115~150	150~200
立仰銲	_	50~75	75~105	95~130	_

◎使用注意事項:參見第111頁不銹鋼電銲條銲接作業要點。

性。

用涂:

系不銹鋼電銲條。

• 全熔填銲接金屬中約含

有18%Cr、12%Ni、

3.5%Mo, 為石灰氧化鈦

● 銲接金屬中因含Mo量甚

高,具有較316更佳之耐

孔蝕性、耐隙蝕性及耐熱

• SUS317不銹鋼專用。

- SUS321與304L、309、 309S等的銲接。
- SUS347、348與 304L、 308 \ 309 \ 310S \ 316 \ 317及321等的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.03	0.83	0.69	12.69	19.05	3.81	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
602	51.7

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

產品特色:

● 銲接金屬為麻田散鐵組 織,有自硬性,常温下有 磁性。

G410

- 耐氧化性及耐腐蝕性佳。
- 銲接金屬經840~870℃ 後熱處理可提高延性及耐 蝕性。

用涂:

● 適用於麻田散鐵13%Cr系 類如:410、420J、420J2 等不銹鋼之銲接。

全烙填肆接金屬化學成份之一例 (Wt%)								
С	Si	Mn	Cr	Fe				
0.09	0.83	0.35	12.83	Bal.				

銲接金屬(全銲道)機械性能之一例

抗拉強度 N/mm²	· 延伸率 %
542	29

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/250	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

G347

AWS A5.4 E347-16 JIS Z 3221 ES347-16 CNS E347-16

AWS A5.4 E317-16 JIS Z 3221 ES317-16 CNS E317-16

產品特色:

- 銲接金屬的奧斯田鐵組織 中含有滴量的肥粒鐵,對 龜裂的感受性低。
- 銲接金屬中因含有Nb元素 所以有很優良的耐粒間腐 **蝕性。**
- 耐酸、耐熱及耐高温時的 潛變強度(creep strength) 佳。

用涂:

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Nb	Fe
0.04	0.89	0.79	9.50	19.28	0.49	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
643	37.6

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/300	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

G2209

AWS A5.4 E2209-16 JIS Z 3221 ES2209-16

產品特色:

- 石灰氧化鈦系雙相不銹鋼 **銲條**。
- 銲接金屬中約含有22% Cr \ 9 % Ni \ 3 % Mo \ 0.15%N °
- 具有高強度、高耐孔蝕性 和抗應力腐蝕裂紋性佳。

用涂:

● 適用於22%Cr的雙相不銹 鋼,如2205不銹鋼之銲 接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Ν	Fe
0.03	0.58	0.77	9.4	23.4	3.35	0.22	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
856	26

尺寸(mm)及電流範圍(A) AC或DC+

線徑/長度	2.6/250	3.2/350	4.0/350	5.0/350
平銲	60~85	85~120	115~150	150~200
立仰銲	50~75	75~105	95~130	_

◎使用注意事項: 參見第111頁不銹鋼電銲條銲接作業 要點。

MIG·TIG銲線

銲接作業要點(MIG)

遮護氣體主要成份為氫(Ar)或氦氣(He)等惰性氣體,以銲線做消耗電極的半自動銲接法一般稱為MIG銲接。銲濺物少,電弧安定,而且 銲道的形狀與外觀佳,銲接金屬的機械性佳。

1. 雷流極性

一般均使用DC+銲接;而銲接薄板時可採用DC-。

2. 遮護氣體

 $Ar+1~2\%O_2$ 或5% CO_2 為建議使用之遮護氣體,微量的 O_2 或 CO_2 可使熔滴潤濕效果較好且電弧熱的分佈較均匀。但因有滲碳的顧慮,建議 O_2 含量以2%或 CO_2 含量以5%為限。氦氣價格太高,除非合約或規範有特別要求,很少使用。

3.雷弧長度

不銹鋼的MIG銲接,多以噴灑移行為主,電弧電壓的調整原則上是要維持最適當弧長。

4.防風措施

室外作業需採取適當的防風措施,在室內則需注意通風及換氣。

5.脈波電弧銲接

有些銲機具有脈波功能,可產生高低交互變換的電流波形,在波峰脈波 電流時,成為噴灑狀態之移行,可得充分的熔滲。在基礎電流的低電流 條件下,無熔滴移行,可使溶池進行冷卻。因此就是立、仰銲情形下熔 滴也不至下垂,利於全姿勢銲接。

銲接作業要點(TIG)

TIG銲接常見於全滲透管對接的打底銲道或薄鈑的銲接,幾乎沒有銲濺物的發生,而且銲道外觀佳。廣泛使用在需高品質或高精度的工件上。

銲接時應注意事項如下:

1.電流極性

必須使用DC-,即鎢棒接負極(DCEN,直流正極性)。

2.遮護氣體

通常使用氫氣為遮護氣體。銲接時,當電流在100~200A時,適當氣體流量約為7~15L/min。當電流在200~300A時,適當氣體流量建議為12~20 L/min。若要獲得較高的電弧熱可考慮使用氦氣或氦氫混合氣,氦氣比例越高電弧熱越高。

3. 鎢極棒伸出長度

為確保氣體的遮護效果,建議鎢電極的伸出長度為4~5mm。在角隅接頭等遮蔽條件較差的工件時可改為2~3mm。若銲槽角度小且深,伸出的長度可改成5~6mm。

4.防風與換氣

室外作業須採取適當的防風措施,在室內則須注意通風及換氣。

5.電弧長度

銲接不銹鋼時,約1~3mm為佳。

GM307

AWS A5.9 ER307

產品特色:

- 電弧安定與母材熔合良好。
- 耐裂性佳,容易加工硬化,無磁性。
- 銲菹美觀。

用涂:

適用於錳鋼與碳鋼鑄件或 鍛件之銲接。

遮護氣體:

• Ar + 1~2% O₂ (MIG)

3	焊線/棒	棒材化导	是成份)	之一例	(wt%)
`	C:	N / 1 co	NI:	0	N/10	Г.

С	Si	Mn	Ni	Cr	Мо	Fe
0.09	0.42	4.22	9.70	20.0	085	Bal.

銲接金屬(全銲道)機械性能之一例

2112 120 (1212) 100 100 11 130 1C 123
抗拉強度 N/mm²	延伸率 %
660	38

MIG 尺寸及電流範圍; DC+

線徑(mm)	1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

◎使用注意事項: 參見第121頁不銹鋼MIG銲接作業要點。

GM308/GT308

AWS A5.9 ER308 JIS Z 3321 YS308 CNS Y308

9.6

20.10

Bal.

產品特色:

- ●電弧穩定與母材熔合良好。
- 銲接金屬因含有適量的肥 粒鐵,耐高温龜裂性佳。
- ●銲道美觀。

用途:

● 適用於SUS304,302, 305等不銹鋼之銲接。

遮護氣體:

- Ar + 1~2% O₂ (MIG)
- 100%Ar (TIG)

◎使用注意事項: 參見第121及122 百不銹鋼MIG/

貝不銹鋼MIG/ TIG銲接作業要

銲線/棒材化學成份之一例 (wt%) C Si Mn Ni Cr Fe

銲接金屬(全銲道)機械性能之一例

1.92

0.34

0.04

	,
抗拉強度 N/mm²	延伸率 %
620	42

MIG尺寸及電流範圍; DC+

WIOハリ及电加配里,DOI				
	線徑(mm)	0.9/1.0	1.2	1.6
	電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸	線徑/長度	; DC-
-------	-------	-------

	2 4534 17		, – •	
線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

Cr

23.40

Fe

Bal.

GM308L/GT308L

產品特色:

●由於含碳量低,銲接金 屬耐粒間腐蝕性佳。

用途:

● 適用於低碳18Cr-8Ni不 銹鋼(SUS304或304L) 之銲接。

遮護氣體:

- Ar+1~2%O₂ (MIG)
- 100%Ar (TIG)
- ◎使用注意事項: 參見第121及122 頁不銹鋼MIG/ TIG銲接作業要

銲線/棒材化學成份之一例 (wt%)

AWS A5.9 ER308L JIS Z 3321 YS308L CNS Y308L

С	Si	Mn	Ni	Cr	Fe
0.03	0.32	1.63	10.10	20.20	Bal.

銲接金屬(全銲道)機械性能之一例

13.14.=4.3	
抗拉強度	延伸率
N/mm ²	%
600	43

MIG尺寸及電流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

TION TIME IT IN IT IN IT						
線徑(mm)	1.6	2.0	2.4/2.6	3.2		
長度(mm)	1000	1000	1000	1000		

產品特色:

● 銲接金屬含碳量低,並含 適量肥粒鐵,耐高温龜裂 性及耐粒間腐蝕性佳。

應用場合:

● 適用於不銹鋼與碳鋼或低 合金鋼間的異材銲接。

保護氣體:

- Ar+1~2%O₂ (MIG)
- 100% Ar (TIG)

◎使用注意事項: 參見第121及122

頁不銹鋼MIG/ TIG銲接作業要

銲接金屬(全銲道)機械性能之一例
抗拉強度 N/mm²	延伸率 %
570	43

銲線/棒材化學成份之一例 (wt%)

Mn

1.65

Ni

13.6

MIG尺寸及電流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

T	10	R	\rightarrow	幺白	1777		曲	-	DC	١
- 1	ı G,	/ \	٦,	117K	1 x /	IK	区	7	DC	,

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

GM309/GT309

AWS A5.9 ER309 JIS Z 3321 YS309 CNS Y309

產品特色:

- 奥斯田鐵組織中含適量肥 粒鐵,龜裂感受性極低。
- 銲接金屬耐熱及耐蝕性佳。

用途:

- SUS 309S不銹鋼。
- ●碳鋼和不銹鋼。
- 硬化性合金鋼和不銹鋼。
- 護面鋼在不銹鋼與碳鋼 (或其他合金鋼)之界 面層的銲接。

遮護氣體:

- Ar+1~2%O₂ (MIG)
- 100% Ar (TIG)

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe
0.03	0.32	1.63	13.3	23.70	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
600	43

MIG尺寸及電流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GM310/GT310

GM309L/GT309L

C

0.02

Si

0.34

AWS A5.9 ER310 JIS Z 3321 YS310 CNS Y310

產品特色:

● 銲接金屬為全奧斯田鐵組 織,耐蝕性、耐熱性佳、 韌性亦優於硬化性較高的 13%Cr鋼。

用途:

- SUS 310不銹鋼。
- Cr-Mo鋼。
- 13%Cr鋼。

遮護氣體:

- Ar+1~2%O₂ (MIG)
- •100%Ar (TIG)

◎使用注意事項: 參見第121及122

頁不銹鋼MIG/ TIG銲接作業要

銲線/棒材化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Fe		
0.11	0.30	1.52	20.5	25.4	Bal.		

銲接金屬(全銲道)機械性能之一例

	/
抗拉強度 N/mm²	延伸率 %
590	41

MIG尺寸及電流範圍;DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

GM312/GT312

AWS A5.9 ER312 JIS 7 3321 YS312

產品特色:

- 銲接金屬的奧斯田鐵組 織中肥粒鐵含量較高。
- 含Cr量高,耐氧化性和 耐裂性均佳。

用涂:

- 29%Cr-9%Ni不銹鋼鑄 件的銲接。
- 不銹鋼與低合金鋼、高 Ni合金鋼等異種金屬的 銲接。

遮護氣體:

- Ar + 1~2%O₂ (MIG)
- 100%Ar (TIG)

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe
0.12	0.41	1.37	9.1	30.2	Bal.

銲接金屬(全銲道)機械性能之一例

	'
抗拉強度 N/mm²	延伸率 %
700	34

MIG尺寸及電流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

ſ	線徑(mm)	1.6	2.0	2.4/2.6	3.2
	長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GM316/GT316

AWS A5.9 ER316 JIS Z 3321 YS316 CNS Y316

產品特色:

- 銲接金屬為奧斯田鐵組 織,耐蝕性、耐熱性、耐 裂性佳。
- 因含有Mo元素,耐隙間腐 蝕性佳。

用涂:

● 耐酸、耐熱要求高的 SUS316不銹鋼之銲接。

遮護氣體:

- Ar + 1~2%O₂ (MIG)
- 100%Ar (TIG)

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	Fe
0.04	0.40	1.48	13.5	18.8	2.7	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
580	38

MIG尺寸及雷流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GM316L/GT316L

AWS A5.9 ER316L JIS Z 3321 YS316L CNS Y316L

產品特色:

- 銲接金屬為奧斯田鐵組 織,耐蝕性、耐熱性、 耐裂性及耐粒間腐蝕較 316佳。
- 因含有Mo元素,耐隙間 腐蝕性佳。

用途:

• 耐酸、耐熱要求高的 SUS316L不銹鋼之銲接。

遮護氣體:

- Ar+1~2%O₂ (MIG)
- 100%Ar (TIG)

銲線/棒材化學成份之一例 (wt%) Si Mn Ni Cr Mo Fe 0.02 0.39 1.58 12.7 19.2 2.31 Bal.

程接金屬(全程道)機械性能之一例

-132 = 120 (= -1 10	/ 150 150 1 11 150 1 11
抗拉強度 N/mm²	延伸率 %
560	43

MIG尺寸及雷流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GM347/GT347

AWS A5.9 ER347 JIS Z 3321 YS347 CNS Y347

產品特色:

- 銲接金屬的奧斯田鐵組織 中含有滴量的肥粒鐵,對 龜裂的感受性低。
- 因含有Nb元素,耐粒間腐 蝕性極佳。
- 耐酸、耐熱及耐高温時的潛變 強度 (creep strength) 佳。

用涂:

- SUS321與304L、309、 309S等的銲接。
- SUS347、348與 304L、 309 \
- 310S、316、317及321等 的銲接。

遮護氣體:

- Ar + 1~2%O₂ (MIG)
- 100%Ar (TIG)

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Nb	Fe
0.06	0.44	1.83	9.7	20.1	0.85	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度	延伸率
N/mm²	%
630	39

MIG尺寸及雷流範圍; DC+

線徑(mm)	0.9/1.0	1.2	1.6
電流範圍(Amp)	70~200	90~250	200~300

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GM410/GT410

AWS A5.9 ER410 JIS Z 3321 YS410 CNS Y410

產品特色:

- 銲接金屬為麻田散鐵組 織,有自硬性,常温下 有磁性。
- 耐氧化性及耐腐蝕性佳。
- 銲接金屬經840℃~870℃ 後熱處理可提高延性及 耐蝕性。

用途:

● 適用於麻田散鐵系13% Cr系類如:410、420J、 420J2等不銹鋼之銲接。

遮護氣體:

• Ar+1~2%O₂ (MIG) 100%Ar (TIG)

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Cr	Fe
0.10	0.35	0.55	13.1	Bal.

銲接金屬	(全銲道)機械性	能之一例
抗拉強度 N/mm²	延伸率 %	後熱處理
630	39	850°C x2hr

MIG尺寸及電流範圍; DC+						
線徑(mm) 0.9/1.0 1.2 1.6						
電流範圍(Amp)	70~200	90~250	200~300			

TIG尺寸 線徑/長度; DC-					
	線徑(mm)	1.6	2.0	2.4/2.6	3.2
	長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第121及122頁不銹鋼MIG/TIG 銲接作業要點。

GT430

AWS A5.9 ER430 JIS Z 3321 YS430

產品特色:

- 銲接金屬為肥粒鐵組織。
- 耐酸及耐高温時的潛變強度(creep strength)佳。

用途:

● 適用於16%Cr系不銹鋼(如SUS 430)之銲接。

遮護氣體:

• 100%Ar

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe
0.05	0.25	0.45	0.45	16.9	Bal.

銲接金屬(全銲道)機械性能之一例

抗拉強度 N/mm²	延伸率	後熱處理
480	34	770°C x2hr

TIG尺寸 線徑/長度; DC-					
線徑(mm)	1.6	2.0	2.4/2.6	3.2	
長度(mm)	1000	1000	1000	1000	

◎使用注意事項: 參見第122頁不銹鋼TIG銲接作業要點。

GT630

AWS A5.9 ER630

產品特色:

● 析出硬化型不銹鋼專用 銲線。

用涂:

● 適用於耐腐蝕磨耗之17-4 PH鋼材。

遮護氣體:

• 100%Ar

銲線/棒材化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Cu	Nb
0.03	0.45	0.61	4.59	16.1	3.50	0.19

銲接金屬(全銲道)機械性能之一例

抗拉強度 N/mm²	延伸率 %	後熱處理
1100	15	1030℃×1hr空冷 + 620℃×4hr空冷

TIG尺寸 線徑/長度; DC-

線徑(mm)	1.6	2.0	2.4/2.6	3.2
長度(mm)	1000	1000	1000	1000

◎使用注意事項: 參見第122頁不銹鋼TIG銲接作業要點。

銲接作業要點

潛弧銲接適用於高品質且高效率的場合。根據銲劑的選擇,不銹鋼潛弧 銲接的銲接金屬中矽含量通常可能高於其他銲接方法,易導致熱縮或龜 裂的發生。因此不適用於全奧斯田鐵組織或肥粒鐵數小於4FN之不銹鋼 如310。

1. 開槽形狀

a. 開槽型式可參考下圖:

- b. 銲接厚板時,雙面開槽可避免變形。
- c. 為使銲道容易剝渣,需確實遵守銲接程序書的參數。

2. 銲接參數

潛弧銲線

- a. 銲接參數類如電流電壓、行走速度、使用線徑等須依銲接程序書執 行,原則上避免使用高電流,否則易造成銲接金屬機械性劣化、變 形不易控制等顧慮。
- b. 奥斯田鐵系不銹鋼與低碳鋼比較
 - 熱傳導率及融點均較低,即使同樣的開槽形狀其熔深也會較深, 所以銲接電流約為低碳鋼的80%。
 - 電阻也較高, 銲線熔融速率約高於低碳鋼25~30%。
- c. 銲線伸出長度對熔融速率的影響很大,也影響電弧的穩定性與銲道的 形狀及性能,所以要注意檢查火嘴的磨損,以得良好的銲接結果。

3.注意事項

潛弧銲接中,因冷卻速度相當緩慢,會有碳化物析出,故母材的碳含量 必須低,保持低入熱量銲接,否則熱脆裂危險性增加,所以開槽的寬度 必須比深度大,日銲接金屬的肥粒鐵含量至少5FN以上。

GS308/GS308L

AWS A5.9 ER308(L) JIS Z 3324 YS308(L)

用途:

• 適用於SUS 304,302, 305等不銹鋼之銲接。

	銲線化學成份之一例 (wt%)					
線材	С	Si	Mn	Ni	Cr	Fe
308	0.05	0.48	1.95	9.7	19.9	Bal.
308L	0.03	0.47	1.41	10.2	19.8	Bal.

◎使用注意事項:參見第131頁不銹鋼潛弧銲線銲接作業要點。

GS309/GS309L

AWS A5.9 ER309(L) JIS Z 3324 YS309(L)

用途:

- SUS 309S不銹鋼。
- 碳鋼、低合金鋼和不銹
- 硬化性合金鋼和不銹鋼。

	並					
線材	С	Si	Mn	Ni	Cr	Fe
309	0.06	0.45	1.64	13.5	24.3	Bal.

全国 伯 ル 超 式 ル ラ __ /回 / w + 0/)

◎使用注意事項:參見第131頁不銹鋼潛弧銲線銲接作業要點。

309L 0.03 0.40 1.45 13.4 24.2 Bal.

GS316/GS316L

AWS A5.9 ER316(L) JIS Z 3324 YS316(L)

用途:

• 適用於SUS316/316L不 銹鋼的銲接。

	銲線化學成份之一例 (wt%)					
線材	С	Si	Mn	Ni	Cr	Мо
316	0.05	0.54	1.60	13.3	19.7	2.29
316L	0.03	0.52	1.55	13.2	19.7	2.32

◎使用注意事項: 參見第131頁不銹鋼潛弧銲線銲接作業要點。

不銹鋼包藥銲線

銲接作業要點

特性:

- (1) 不銹鋼包藥銲線,熔填率約為被覆銲條的2~4倍。熔填效率則約為90%。
- (2) 銲接參數較實心銲線更易調整。
- (3) 銲濺物很少、脱渣性佳、銲道美觀。
- (4) 電弧穩定,容易通過射線檢測。

1. 遮護氣體

一般使用CO₂為遮護氣體。但Ar+20~25%CO₂混合氣可使銲濺物更少,使用也很普遍,滴當的氣體流量建議為20~25L/min。

2.線材伸出長度

- a.建議銲線伸出長度:線徑0.9mm為15~20mm; 線徑1.2mm及 1.6mm為15~25mm。
- b. 銲線伸出長度太長,可能造成遮護不良,產生氣孔以及滲透不足等狀況。

3.防風措施

室外作業需採取適當的防風措施,在室內則需注意通風及換氣。

4.銲接煙塵

使用者須參考安全與警語,做好適當的防護措施。

5. 銲線的貯存

建議已拆封但未用完的銲線,最好能放置在有乾燥劑的塑膠袋內。

6. 銲接參數及熔填率(參考數據)

線徑(mm)	電流(A)	電壓(V)	熔填率(Kg/hr)	伸出長度(mm)
1.2	150 180 200 220 250	24~26 25~27 26~28 27~29 28~30	2.3 3.0 3.6 4.2 4.8	15~25
1.6	200 220 240 280 300	28~30 29~31 29~31 31~33 31~34	3.0 3.6 3.9 5.0 5.5	15~25

GMX308L

AWS A5.22 E308LT1-1 JIS Z 3323 TS308L-FC1

產品特色:

- ◆ 金紅石系奧斯田鐵組織之包藥銲線● 嫡 用 於 3 0 1 、 3 0 2 、 3 0 4 、
- ■電弧柔順、銲濺物極少、剝渣性 佳。
- 因銲接金屬含碳量低,耐龜裂性、耐晶粒間腐蝕性均佳。
- 銲道平滑美觀,紋路細緻。
- 角銲成形微平至微凸,角銲尺寸容 易控制。

用涂:

● 趙 用 於 3 0 1 、 3 0 2 、 3 0 4 304L、305等不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)					
С	Si	Mn	Ni	Cr	Fe
0.03	0.60	1.59	9.87	19.18	Bal.

銲接金屬(全銲道)機械性能之一例					
抗拉強度 N/mm²	延伸率 %				
573	39.3				

尺寸及電流範圍					
綡	徑	1.2mm	1.6mm		
極	性	DC+	DC+		
電法 /Λ)	平、橫銲	150~250	200~300		
電流 (A) 立、仰銲		100~140	_		
遮護	氣體	CO ₂	CO ₂		

- 1.使用一般的CO₂銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2. 參見第134頁不銹鋼包藥銲線銲接作業要點。

AWS A5.22 E308LT0-3 JIS Z 3323 TS308L-FN0

產品特色:

- 無氣遮護型包藥銲線。
- 電弧柔順、銲濺物少、剝渣性佳。
- 銲道平滑美觀、低滲透,是護面堆 銲的最佳選擇。
- 熔填效率高。

用途:

●適用於相當材質之母材接合 用如SUS 301、302、304、 304L、305等不銹鋼之銲接。

	全熔填銲接金屬化學成份之一例 (wt%)							
С	C Si Mn Ni Cr Fe							
0.03	0.48	1.50	9.8	19.8	Bal.			

銲接金屬(全銲道)機械性能之一例				
抗拉強度 N/mm²	延伸率 %			
563	43			

	尺寸及電流範圍						
線徑	1.2mm	1.6mm	2.4mm				
極性	DC+	DC+	DC+				
電流 (A)	170~280	200~300	250~450				
伸出長度 (mm)	15~30	20~30	25~35				
遮護氣體	無氣遮護	無氣遮護	無氣遮護				

使用注意事項:

- 1.使用一般的CO。銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2. 參見第134頁不銹鋼包藥銲線銲接作業要點。

GMX309L

AWS A5.22 E309LT1-1 JIS 73323 TS309L-FC1

產品特色:

- 金紅石系奧斯田鐵組織之包藥銲線
- 銲濺物少、剝渣性佳。
- 銲接金屬含有適量肥粒鐵, 耐龜裂 性 体 、 銲接性 佳。
- 銲接金屬含碳量低, 耐晶間腐蝕性 佳。
- 角銲成形微平至微凸,角銲尺寸容 易控制。

用涂:

- SUS 309L不銹鋼、碳鋼和不銹 細。
- 硬化性合金鋼和不銹鋼。
- 護面鋼在不銹鋼與碳鋼(或其他 合金鋼)之界面層的銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Fe		
0.04	0.32	1.43	12.70	23.78	Bal.		

銲接金屬(全銲道)機械性能之一例				
抗拉強度 N/mm²	延伸率 %			
619	35.4			

尺寸及電流範圍					
線	徑	1.2mm	1.6mm		
極	性	DC+	DC+		
電法 (A)	平、橫銲	160~250	200~300		
電流 (A) 立、仰銲		100~140	_		
遮護	氣體	CO ₂	CO ₂		

- 1.使用一般的CO。銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2.參見第134頁不銹鋼包藥銲線銲接作業要點。

AWS A5.22 E309LT0-3 JIS Z3323 TS309L-FN0

產品特色:

- 無氣遮護型包藥銲線。
- 電弧柔順、銲濺物少、剝渣性佳。
- 銲道平滑美觀、滲透淺,是護面堆 銲或緩衝堆銲的最佳選擇。

用途:

- SUS 309L不銹鋼、碳鋼和不銹 鋼的異材銲接。
- 硬化性合金鋼和不銹鋼的異材銲 接。
- 護面鋼在不銹鋼與碳鋼(或其他 合金鋼)之界面層的銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Fe		
0.04	0.32	1.43	12.70	23.78	Bal.		
组接 全屋 / A 组送 \							

銲接金屬(全銲道)機械性能之一例				
抗拉強度 N/mm²	延伸率 %			
619	35.4			

尺寸及電流範圍						
線徑	1.2mm	1.6mm	2.4mm			
極性	DC+	DC+	DC+			
電流 (A)	160~250	200~300	250~450			
伸出長度 (mm)	15~30	20~30	25~35			
遮護氣體	無氣遮護	無氣遮護	無氣遮護			

使用注意事項:

- 1.使用一般的CO₂銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2. 參見第134頁不銹鋼包藥銲線銲接作業要點。

GMX309LMo

AWS A5.22 E309LMoT1-1 JIS Z3323 TS309LMo-FC1

產品特色:

- 金紅石系奧斯田鐵組織之包藥銲線
- ●添加Mo合金,耐高温強度、耐龜 裂性、耐晶粒間腐蝕性均佳。
- 銲濺物極少、剝渣性佳。

用途:

- SUS 316L不銹鋼與碳鋼或低合 金鋼的異材銲接。
- SUS316、SUS316L與碳鋼護 面鋼在不銹鋼與碳鋼(或其他合 金鋼)之界面層的銲接。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Ni	Cr	Мо	Fe
0.03	0.55	1.55	13.5	23.8	2.42	Bal.

銲接金屬(全銲道)機械性能之一例				
抗拉強度 N/mm²	延伸率 %			
559	38			

尺寸及電流範圍						
約	?徑	1.2mm	1.6mm			
極性		DC+	DC+			
電流 (A)	平、横銲	160~250	200~300			
	立、仰銲	90~130	_			
遮護氣體		CO ₂	CO ₂			

- 1.使用一般的CO₂銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2. 參見第134頁不銹鋼包藥銲線銲接作業要點。

產品特色:

- 金紅石系奧斯田鐵組織之包藥銲線
- 電弧柔順、銲濺物少、剝渣性佳。
- 銲接金屬中含有適量肥粒鐵,耐龜 裂性與銲接性佳。
- 銲接金屬含碳量低,耐晶間腐蝕性 佳。
- 具有優良低温衝擊韌性及耐蝕性。

用途:

●耐酸、耐熱要求高的SUS316L 不銹鋼之銲接。

全熔填銲接金屬化學成份之一例 (wt%)								
С	Si	Mn	Ni	Cr	Мо	Fe		
0.03	0.50	1.45	12.4	18.9	2.35	Bal.		

銲接金屬(全銲道	銲接金屬(全銲道)機械性能之一例				
抗拉強度 N/mm²	延伸率 %				
550	42				

尺寸及電流範圍							
線	徑	1.2mm	1.6mm				
極性		DC+	DC+				
電流 (A)	平、横銲	150~250	200~300				
	立、仰銲	90~130	_				
遮護氣體		CO ₂	CO ₂				

- 1.使用一般的 CO_2 銲機就可以施銲,但送線輪組的加壓手把不可調的太緊。
- 2.參見第134頁不銹鋼包藥銲線銲接作業要點。

硬面銲簡介

硬面銲是使工件達到使用功能及延長使用壽命的最經濟的方法,硬面銲顧名思義,在較軟質的工件母材表面堆銲一或多層能符合使用功能的硬面合金謂之。

對已磨損的工件母材欲回復原有性能,通常包含以下三種銲接:

1. 堆銲(Build-up)

工件母材磨耗嚴重,硬面銲之前使用與母材相當之銲材先回復工件原有尺寸所做的銲接,又稱做補肉或積層銲。

2. 塗層銲(Buttering)

硬面層銲材與母材機械性及物性差異太大時,兩者不易銲合,須先選用 介於兩者之間的銲材,於工件母材上先堆上一層以扮演緩衝之效果。

3.硬面銲(Hardfacing)

即表面硬化銲接,為耐磨耗層,銲接於母材或表面層以延長機械設備的使用壽命。通常限制銲層在二至三層以下。

如何選用硬面銲材料:

銲接材料的選擇依據以下因素:

- 1.母材: 會影響使用打底銲材的選擇,案例如下:
 - a. 錳鋼:用於機件受嚴重衝擊場合。使用高錳鋼銲材使之直接回復其 原來尺寸。
 - b.碳鋼或低合金鋼:直接使用低合金硬面銲材回復其尺寸即可。

2. 磨耗的種類:如下所述:

a.嚴重磨耗:

嚴重磨耗經常伴有高應力集中、低度衝擊。工件可能須輾壓高硬度礦物或抵擋會沖蝕工件表面的物質。用途如農業機械設備、篩子、 過濾網、漿料輸送幫浦。

b.嚴重衝擊:

用力的敲擊或撞擊,可能造成金屬表面龜裂、壓碎或鑿洞。因此需要錳鋼材料具有加工硬化之特性提供優良抗衝擊特性。用途如碎石機、槌子、沖頭、鐵路的鐵軌轍叉與道叉。

c.金屬對金屬(摩擦或黏附):

金屬與金屬彼此間的轉動或滑動(無潤滑劑)。用途如滾輪、惰 輪、剃刀或剪刀、軸承表面。

d.金屬對砂土(衝擊加磨耗):

磨耗的對象以砂土為主,具有中度衝擊特性。同時遇到衝擊和磨耗

面耐磨用

銲材選用

兩種動作所造成的損耗。用途如挖土設備、土木農業機械之鏟齒、 刀間等。

e.高溫磨捐:

上述磨損因素附加高温所產生的磨損。如熱鍛造模具、軋鋼廠、軋 延滾輪、熱交換器葉片、模具、各式連鑄導輪等。

f. 腐蝕磨捐(沖蝕):

化學侵蝕,用途如化學物品的容器及設備。

事實上,許多磨耗多非單獨產生,可能涵蓋兩種以上並存,因此硬面銲 材的選用,必須考量主要磨耗種類的優先順序做合理的選擇。

3. 銲接方法:

銲接方法的選擇主要取決於欲修復機件的尺寸及數量、銲接姿勢、現有 設備以及須硬面堆銲的頻率,一般常用銲接方法如下:

1.手工銲接:

使用電銲條,只需要最少的設備,具有對銲接地點及姿勢的機動性。

2.半自動銲接:

使用送線機,無氣遮護式或氣體遮護式包藥銲線,較手工銲接熔填效 率高。

3. 自動銲接:

需要較複雜銲接設備及銲前準備,但因高熔填效率,相對使生產效率 大為提升,可诱過下述之方法獲得:

- (A)中性潛弧銲劑搭配含合金線材(通常指合成型銲線)。
- (B)含合金銲劑搭配一般碳鋼線材。
- (C) 部份無氣遮護式包藥銲線,可視需求選用或不用潛弧銲劑。

4. 電流極性的說明:

DCEP(DC+):為百流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN(DC-):為直流負電極,銲條銲線或電極接負極,又稱作

直流正極性(DCSP)。

磨耗類型	合金類型	銲道微觀組織	特性	應用(例)
強烈衝擊	高錳鋼	奥斯田鐵 組織	高衝擊韌性及優良可加援。 良可加後。 是 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	13%錳鋼、粉碎 機錘子、衝錘、 重機械鐵軌連結 器等。
緩衝層 及接合修補	低合金 成份	變韌鐵 + 波來鐵	用來作為表表 硬面有 中 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	齒輪、鏟土機滾輪、鏈輪、離合 器柄、導輪及緩 衝層堆銲等。
金屬與金屬間磨耗(黏滯磨耗)	中、低 合金成份	少量麻田散鐵 至大量麻田散 鐵	使用於金屬機件間摩擦或滑動(無潤滑油)。具有中至高硬度及高耐磨性能。	推土機惰輪、履 帶連接件、鏟斗 刃口、螺旋式輸 送機等。
金屬與砂土 間磨耗 (衝擊加磨 耗)	中量合金含碳化物	中量 碳化物合金	抵抗如金屬對砂土之衝擊加磨耗。具有足量碳化物可承受極高之低應力磨耗。	鏟土機刀刃、鏟 齒、衝錘、砂土 攪拌葉片、篩 網、水泥攪拌 器、疏浚切刀、 農用鏟具等。
嚴重磨耗	碳化物	高量碳化物合 金	抵抗如金屬對歐國 金屬對國國 医属型 医属型 电弧 医二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二二甲二	噴砂嘴、壓碎 無線 大學 中華 大學 中華 大學 中華 大學 中華
金屬間耐熱 疲勞性磨耗 (高温或腐 蝕)	13%Cr 系列 不銹鋼	13%鉻 麻田散鐵	具有優良耐腐蝕 及耐熱疲勞性 能。	熱交換器翼片、 模具、渦輪葉片、耐熱閥門、 化學物品容器及 設備、連鑄軋鋼 輪等。

本公司產品 磨耗種類 硬度 (例) 雷銲條 包藥銲線 潛弧銲線 HRC 15 GH13M MXW MANG 1 HARDMANG 1 MXW MANG 3 HARDMANG 3 GH300 15 MXW BU-O MXW K104-S GH300R MXW BU-G GH350R 39 硬面堆銲之緩衝 GH450 MXW SUPER BU-G MXW K107-S 35 GH450R MXW BB-G MXW K105-S GH600 MXW 102-G MXW K102-S GH600R 起重機輪 挖十機機件 MXW D GH750 MXW DD-G GH900 MXW 969-G **GH900W MXW R100** MXW 969-O HARD D MXW M7-G **MXW R101** HARD 31 **MXW R117** 鏟斗齒 刮刀 HARD 35 **MXW R100** GH800 MXW R101 **MXW R100 MXW R100** HARD 35 MXW R101 **MXW R101** GH800 **MXW R100D MXW R100D** GH900Mn MXW R100SHD MXW R100SHD GH950Nb MXW 62-O MXW 62-O GH950 MXW 63-O MXW 63-O GH950C MXW 65-O MXW 65-O 粉碎機滾輪 磨煤輪 **GHCW** MXW 66-0 MXW 66-0 MXW 70-O MXW 70-O MXW 35 K410NiMo-S GH13Cr-4 GMX 410NiMo MXW K420-S 55

MXW K423-S

閥門內部

銲接注意事項

要得到理想的硬面效果以及盡量減少龜裂發生,宜選用合適硬面合金以 及正確銲接程序,並應注意以下幾個問題:

1.母材的準備

銹蝕與雜質如油污、泥沙等必須清除乾淨,否則容易造成氣孔。另外母 材本身已有龜裂時,常會使銲接金屬繼續發生龜裂,所以母材上的缺 陷,應於銲接前徹底去除。

2.入熱量及溫度控制

為了儘量減少龜裂情形的發生,可參考下述要領:

a. 預熱與銲道間溫度的控制

此為有效避免龜裂發生的步驟之一。表一列出母材的碳當量以及施 行預熱與銲道間温度的參考值。實際銲接時,工件的大小及板厚、 銲材的種類及銲接方法等應一併考慮之。

表一:母材的碳當量以及施行預熱與銲道間溫度的參考值

碳當量	預熱與銲道間溫度			
≦0.3 >0.3但≦0.4 >0.4但≦0.5 >0.5但≦0.6 >0.6但≦0.7 >0.7但≦0.8 >0.8	≦100°C ≥100°C ≥150°C ≥200°C ≥250°C ≥300°C ≥350°C			
不需預熱,但銲道間温度須控制在260℃以下				
可不預熱,銲道間温度150℃以下				
400℃以上				
	≦0.3 >0.3但≦0.4 >0.4但≦0.5 >0.5但≦0.6 >0.6但≦0.7 >0.7但≦0.8 >0.8 不需預熱,但銲道間温 可不預熱,銲道			

説明1: Ceg (碳當量) %=C+ Mn/6+Si/24+Cr/5+Mo/4+Ni/15。 説明2: 銲接後須依據母材合金成份或碳當量做必要之後熱處理。

説明3: 高合金鋼部份不含300系列之奧斯田鐵系不銹鋼。

b. 銲後立即加熱

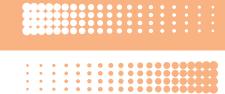
銲接後立刻將工件加熱至300~350℃,並維持10~30分鐘,可以有 效避免龜裂的發生。但應避免過度加熱,否則可能造成硬度下降。

c. 後熱處理

550~750℃的後熱處理,可以有效避免龜裂、工件變形以及改善銲 接金屬特性,但需確認硬度值是否符合規定。

3.緩衝銲層

母材需施銲一層非常高硬度、高合金的銲接金屬時,先銲上一層低合金成份的緩衝層可有效避免龜裂。


4.渗透

在硬面銲接中, 銲接金屬的特性會隨著銲接時銲材與母材滲透相互稀釋 的程度而有所改變。通常銲材的化學成份多與母材不同, 要得到銲接 金屬理想的硬度與特性, 盡可能以多道銲接以避免高滲透、高稀釋。

5.銲接變形

使用短銲道、間跳式、對稱式銲接法或銲前將工件使用高拘束力固定等,都可以用來降低工件的變形。

硬面耐磨用電銲條

銲接作業要點(雷銲條)

- 1.使用前進後退法銲接,可避免接頭發生氣孔。
- 2. 銲接時應儘可能保持短電弧,以避免氮及氫氣進入電弧中造成氣孔。
- 3.若需織動,織動幅寬不可超過心線線徑之3倍。
- 4. 電銲條使用前需先乾燥,並清除銲接部位之銹蝕、油汗或其他雜質等。

HARDMANG 1 -

產品特色:

- 加工硬化型奥斯田鐵錳 細電銲條。
- 銲接金屬具高韌性, 在 高衝擊加工下硬度可快 涑提高。
- 用在錳鋼的修補和堆銲。
- 用於奧斯田鐵錳鋼對錳 錮的銲接。

用涂:

● 適用於錐形碎礦機、壓 碎機輥、錘碎機、衝擊 機桿、鐵軌岔心及鉗具 等之修補。

4	王焀县	具	蜀化字双1	万之一例	(Wl%)
	С	Si	Mn	Cr	Fe
	0.70	0.50	1110	2.02	Dal

銲接金屬硬度值之一例 銲後原態HRC 加丁硬化後HRC 23 47

尺寸(mm)及電流範圍(A)					
線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450	
平銲	50~80	100~140	140~190	180~230	

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 一般不需要預熱及後熱,但多道銲 時,為避免龜裂,銲道間温度應控 制在260℃以下。

GH13M

JIS Z 3251 DFMA-250B CNS FHMA-250B

產品特色:

- ●加工硬化型奥斯田鐵錳 細電銲條。
- 韌性大但加工硬化性特 強。
- 對於激烈磨耗的衝擊有 優越的抵抗性。

用涂:

● 適用於13% 錳鋼、碎石 機的鎚子、鉗子及挖斗 等及重機械鐵軌連結器 等受激烈衝擊部位的堆 **組**。

全熔填鋁接金屬化學成份之一的			分之一例	(Wt%)	
	С	Si	Mn	Cr	Fe
	0.31	0.20	12.85	0.1	Bal.

銲接金屬硬度值之一例 銲接後加工前HRC 加工硬化後HRC 42 19

		尺寸(mm)及	と電流範圍(A)
線徑/長度 3.2/350	3.2/350	4.0/400	5.0/450	
	平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥
 - 2. 盡量以低電流銲接並避免過熱。
 - 3. 每道銲珠銲後需立即施以錘擊。

HARDMANG 3

產品特色:

- ●加工硬化型奧斯田鐵錳 細雷銲條。
- 銲接金屬具高韌性, 在 高衝擊加工下硬度可快 涑提高。
- 可用於錳鋼與一般碳鋼 之 銲 接。

用涂:

●適用於錐形碎礦機、壓 碎機輥、錘碎機、衝擊 機桿、鐵軌岔心及鉗具 等之修補。

全熔填銲接金屬化			金屬化學	學成份之一例 (wt%)		
	С	Si	Mn	Cr	Ni	Fe
	0.32	0.43	16.24	16.99	0.01	Bal.

銲接金屬硬度值之一例			
銲後原態HRC	加工硬化後HRC		
21	46		

		尺寸(mm)及	と電流範圍(A)
線徑/長度	3.2/350	4.0/400	5.0/450	
平銲		100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 一般不需要預熱及後熱,但多道銲 時,為避免龜裂,銲道間温度應控 制在260℃以下。

金屬與金屬間磨耗

產

品介紹

GH300

JIS Z 3251 DF2A-300B CNS EH2A-300B

產品特色:

- 銲接金屬硬度約HRC31。
- 作業性佳、銲濺物少、 銲道美觀。
- 切削加工性佳。

用途:

● 適用於齒輪、軸心、鏟 土機之滾輪及導輪、鐵 軌,車輪或緩衝層等之 多層堆銲。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.07	0.46	0.99	1.71	0.23	Bal.

銲接金屬硬度值之一例

銲後原態HRC	950℃ 水淬 HRC
31	42.5

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230
立仰銲	90~120	120~170	_

◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。

- 2. 請盡量以短電弧銲接。
- 3. 銲接需請將母材施以150℃預熱。

GH350R

JIS Z 3251 DF2A-350R CNS EH2A-350R

產品特色:

- 銲接金屬硬度約HRC35。
- 作業性佳、銲濺物少、 銲道美觀。
- 切削加工性佳。

用涂:

● 適用於機械表面修補、 碳鋼、鑄鐵銲補、硬化 鋼修補與製造。

全熔填銲接金屬化學成份之一例 (wt%)					
С	Si	Mn	Cr	Мо	Fe
0.11	0.37	0.86	2.37	0.63	Bal.
趕接金屬硬度值之一 例					

銲接金屬硬	度值之一例
銲後原態HRC	層數
35.7	第三層

尺寸(mm)及電流範圍(A)				
線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	50~80	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以100~120℃ 乾燥 60分鐘。
 - 2. 請盡量以短電弧銲接。
 - 3. 銲接需請將母材施以150℃預熱。

GH300R

JIS Z 3251 DF2A-300R CNS EH2A-300R

產品特色:

- 銲接金屬硬度約HRC31。
- 作業性佳、銲濺物少、 銲道美觀。
- 切削加工性佳。

用途:

● 適用於齒輪、軸心、鏟 土機之滾輪及導輪、鐵 軌,車輪或緩衝層等之 多層堆銲。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.13	0.60	1.25	1.10	0.03	Bal.

銲接金屬硬度值之一例

銲後原態HRC	950℃ 水淬 HRC
31	42.5

尺寸(mm)及電流範圍(A)

	線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
ſ	平銲	50~80	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前請先以100~120℃ 乾燥 60分鐘。
 - 2. 請盡量以短電弧銲接。
 - 3. 銲接需請將母材施以150℃預熱。

GH450

JIS Z 3251 DF2A-450B CNS EH2A-450B

產品特色:

- 銲接金屬硬度約HRC47。
- 具自硬性之麻田散鐵組 織。
- 可抗中度衝擊和中度磨耗。

用途:

適用於銲補開山機鏈輪、 推土機之鏈齒輪、鏟斗履 帶、鏟齒、刀片等金屬接 觸面間之磨耗。

全熔填銲接金屬化學成份之一例 (wt%) C Si Mn Cr Mo Fe

С	Si	Mn	Cr	Мо	Fe
0.27	0.88	1.09	2.36	0.22	Bal.

銲接金屬硬度值之一例銲後原態HRC回火600℃ HRC46.636.5

尺寸(mm)及電流範圍(A)線徑/長度3.2/3504.0/4005.0/450平銲100~140140~190180~230

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 盡量以短電弧銲接。
 - 3. 母材易硬化或需多道銲接時,宜使 用低氫系銲條打底。

產

金屬與金屬間磨耗用

GH450R

JIS Z 3251 DF2B-450R CNS EH2B-450R

產品特色:

- 銲接金屬硬度約HRC47。
- 作業性佳、銲濺物少、 銲道美觀。
- 顯微組織具麻田散鐵相. 可提供良好的抗磨耗性。

用涂:

● 嫡 用 於 銲 補 開 山 機 鏈 輪、推土機之鏈齒輪、 等金屬接觸面間之磨 耗。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.35	0.26	0.62	3.50	0.52	Bal.

銲接金屬硬度值之一例

銲後原態HRC	回火600℃ HRC
47	36.3

尺寸(mm)及電流範圍(A)

線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	50~80	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以100~120℃ 乾燥 60分鐘。
 - 2. 盡量以短電弧銲接。
 - 3. 母材易硬化或需多道銲接時,宜使 用低氩系銲條打底。

GH600

JIS Z 3251 DF3C-600B CNS EH3C-600B

產品特色:

- 銲道為自硬性麻田散鐵組
- 銲後表面硬度可達 HRC55 •

用涂:

● 適於高耐磨耗要求之不 須機械加工切削之開山 機輪鏈及鏟斗、鏟齒的 銲補。碎石機、堆高 機、挖泥船之挖泥刀、 拌石機翼、泵筒輪葉、 螺旋式輸送機以及螺旋 輸送機之堆銲。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
0.74	0.89	1.24	5.17	0.02	Bal.

銲接金屬硬度值之一例

銲後原態HRC	回火600℃ HRC
55.6	44.5

尺寸(mm)及雷流範圍(A)

	1		
線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 確實清除開槽或銲補區之油污、鐵 銹。

GH600R

JIS Z 3251 DF3B-600R CNS FH3B-600R

產品特色:

- 金屬間耐磨耗用氧化鈦系 **趕條**。
- 作業性佳、銲濺物少、 銲道美觀。
- 銲接金屬硬度大約 HRC55 °
- 顯微組織具麻田散鐵相. 可提供良好的抗磨耗性。

用途:

● 嫡於高耐磨耗要求之不 須機械加工切削之開山 機輪鏈及鏟斗、鏟齒的 銲補。碎石機、堆高 機、挖泥船之挖泥刀、 拌石機翼、泵筒輪葉、 螺旋式輸送機以及螺旋 輸送機之堆銲。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Мо	Fe		
0.34	0.34	0.62	3.88	0.74	Bal.		

銲接金屬硬度值之一例					
銲後原態HRC	600℃ 回火HRC				
55.7	44.5				

尺寸(mm)及電流範圍(A)						
線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450		
平銲	50~80	100~140	140~190	180~230		

- ◎使用注意事項: 1 銲條使用前需先以100~120℃ 乾燥 60分鐘。
 - 2. 確實清除開槽或銲補區之油污、鐵

金屬與砂土

間磨耗

產

品

介紹

GH750

JIS Z3251 DF3C-700B CNS EH3C-700B

產品特色:

- 不需熱處理。
- 銲渣剝離性佳、銲濺物 少。

用途:

● 適用於不須機械加工的鏟 土機的鏟齒、推土機和土 木農業機械的主要工作部 件的堆/補銲。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	其它
0.74	1.53	1.08	5.15	0.03	≦2.0

銲接金屬硬度值之一例

銲後原態HRC	層數
60.4	第三層

尺寸(mm)及電流範圍(A)

			•
線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 麻田散鐵性質硬脆,必要時需施以 預熱或後熱以降低殘留應力。

GH900W

產品特色:

- 銲接金屬中含鉻、鎢及鉬 等特殊合金元素,可與碳 形成不同之碳化物。
- 具高硬度,耐磨性及耐衝 擊性佳。
- 金相以麻田散鐵為主。

用途:

- 適用於鍛造用之合金鋼、 沖床模具等之表面修補。
- 工具鋼之修補。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	W	Cr	Мо		
0.65	0.46	0.58	8.86	7.60	2.56		

銲接金屬硬度值之一例 銲後原態HRC 層數 60 第二層

尺寸(mm)及電流範圍(A)						
線徑/長度 3.2/350 4.0/400 5.0/450						
平銲	100~140	140~190	180~230			

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 母材需施以250℃以上之預熱,可緩和銲件於銲接後冷卻太快而龜裂。

GH900

JIS Z 3251 DF5A-700B

產品特色:

- 銲接金屬含有多種特殊合金元素,可形成高硬度之碳化物。
- 硬度高且穩定,韌性稍差,不須熱處理,具優異之耐磨耗性、耐龜裂性良好。

用途:

● 適用於高速鋼刀刃之銲補 及切削刀具之修補銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Cr	Мо	W	Fe
0.90	0.80	0.45	0.03	4.85	7.81	1.99	Bal.

熔填金屬機械性能之一例

銲後原態 HRC	層數
61	第二層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	90~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 麻田散鐵性質硬脆,必要時需施以 預熱或後熱以降低殘留應力。

HARD D | -

產品特色:

- 適合全姿勢銲接。
- 銲接金屬含鉻碳化物、 鉻硼化物,硬度均匀,耐 熱磨耗性佳。

用途:

● 適合砂土磨耗、輪葉、 攪拌葉片等修補用。

全熔填銲接金屬化學成份之一例 (wt%)

C	51	IVIII	Cr	IVIO+共匕
2.33	1.23	0.54	4.05	2.0

銲接金屬硬度值之一例

銲後原態HRC	層數
60	第三層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以100~160℃ 乾燥 60分鐘。
 - 2. 銲接層數以三層為限。
 - 3. 銲道表面會產生應力消除裂紋,可防止銲接金屬與母材的剝離。

產品介紹

抗嚴重磨耗用

產品特色:

- 奥斯田鐵基質之碳化鉻 析出型銲條。
- 含有特殊合金元素,耐 熱磨耗及耐腐蝕性極為 優良。
- 銲接金屬表面光滑美 觀, 磨擦係數極低。
- 適合中度衝擊、強烈磨 耗場合使用。

用涂:

適用於攪拌葉片、篩網、 鏟齒及農具等。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Fe
2.40	0.60	0.60	27.3	1.3	Bal.

銲接金屬硬度值之一例 碳鋼HRC 錳鋼HRC 層數 47 45.5 第三層

1	J	尺寸(mm)及	と電流範圍(A)
	線徑/長度	3.2/350	4.0/400	5.0/450
	平銲	100~140	140~190	180~230

- ○使用注意事項: 1. 銲條使用前需先以250~300℃ 乾燥 60分鐘。
 - 2. 銲接層數以三層為限。

HARD 35 -

產品特色:

- 奥斯田鐵基質之碳化鉻析 出型銲條。
- 銲濺物少、作業性佳。
- 銲接金屬表面光滑美 觀, 磨擦係數極低。
- 嫡合中度衝擊、強烈磨 耗場合。

用涂:

● 適用於衝錘、螺桿、輪 翼、鑽頭、推土機、攪拌 葉片等高磨耗,中度衝擊 工件之修補。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Fe		
3.40	1.00	0.30	32.0	Bal.		

銲接金屬硬度值之一例			
碳鋼HRC	錳鋼HRC	層數	
59	56	第二層	

尺寸(mm)及電流範圍(A)					
線徑/長度	3.2/350	4.0/400	5.0/450		
平銲	100~140	140~190	180~230		

- ◎使用注意事項: 1. 銲條使用前需先以250~300℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 適合在碳鋼、低合金鋼及錳鋼母材 **上施銲。**
 - 4. 耐熱磨耗可達500℃。

GH800

產品特色:

- 碳及鉻為主要合金元素 。
- 由於碳化鉻的析出,具有 很高的硬度及耐磨耗性。

用途:

• 適用於嚴重泥砂磨損部件 及中度衝擊工件之銲補。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Fe			
3.4	0.90	1.00	33	Bal.			

銲接金屬硬	度值之一例
銲後原態HRC	層數
60	第二層

尺寸(mm)及電流範圍(A) 線徑/長度 3.2/350 4.0/400 5.0/450 平焊 100~140 140~190 180~230

- ◎使用注意事項: 1. 銲條使用前需先以250~300℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可 以防止銲接金屬與母材的剝離。

GH900Mn

JIS Z 3251 DFCrA CNS EHCrA

產品特色:

- 碳及鉻為主要合金元素 。
- 含有Nb、V、Mo、W等特 殊合金元素,可與碳形成 不同的碳化物。
- 耐熱磨耗可達816℃。
- ●可同時耐高温腐蝕與氧 化。

用途:

● 適用於 噴砂 嘴、 攪拌器 之葉片等表面修補。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Мо	Nb	W	V
5.6	0.9	1.13	23.8	5.8	5.5	2.0	1.2

銲接金屬硬度值之一例

銲後原態HRC	層數
63	第二層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可以防止銲接金屬與母材的剝離。

產品特色:

- 高碳化鉻析出型銲條。
- 銲接金屬具高硬度及耐 磨耗性。

GH950

● 耐熱磨耗可達500℃。

用途:

適用於嚴重泥砂磨損配件之修補銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Fe			
4.50	1.20	1.20	31.0	Bal.			

全熔填銲接金屬硬度值之一例

銲後原態HRC	層數
60	第二層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	平銲 100~140		180~230

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可 防止銲接金屬與母材的剝離。

GH950Nb | -

產品特色:

- ●碳、鉻及鈮為主要合金 元素,屬碳化物析出型 銲條。
- 耐熱磨耗達650℃。
- 適合低應力高磨損之工 件修補。

用途:

適用於耐磨板、磨煤輪、 爐渣軸管、破碎機之修補 銲接。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Cr	Nb
5.7	1.1	0.90	25.0	7.0

全熔填銲接金屬硬度值之一例

銲後原態HRC	層數
63	第二層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~190	180~230

- ◎使用注意事項: 1. 銲條使用前請先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可 防止銲接金屬與母材的剝離。

GH950C

產品特色:

- 作業性佳、銲濺物少、稀 釋率低。
- 銲接金屬中含有大量碳化 鉻。
- 耐熱磨耗可達600℃。
- 適合砂土高磨耗用。
- 抗沖蝕磨耗效果亦佳。

用途:

● 適用於噴砂嘴、攪拌器 之葉片等表面修補。

全熔填銲接金屬化學成份之一例 (wt%) C Si Mn Cr 其它 Fe

5.9 1.10 1.10 33.2 ≦2.0 Bal. 全熔填銲接金屬硬度值之一例

銲後原態HRC 層數 61 第二層

尺寸(mm)及電流範圍(A)線徑/長度3.2/3504.0/4005.0/450平銲100~140140~190180~230

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可以防止銲接金屬與母材的剝離。

- 高碳化鎢析出型銲條。
- 銲接金屬具高硬度,耐 磨耗性特優。
- 作業性佳、銲濺物少、 稀釋率低。

用途:

產品介紹

● 適用於磨耗激烈的場 合,如鏟斗齒、鑽頭、 刮刀,攪拌螺旋葉等。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	W	Fe
4.1	1.85	0.6	42.0	Bal.

全熔填銲接金屬硬度值之一例

銲後原態HRC	層數
65	第二層

尺寸(mm)及電流範圍(A)

線徑/長度	3.2/350	4.0/400	5.0/450
平銲	100~140	140~180	180~230

- ◎使用注意事項: 1. 銲條使用前需先以200~250℃ 乾燥 60分鐘。
 - 2. 銲接層數以兩層為限。
 - 3. 銲道表面會產生應力消除裂紋,可 以防止銲接金屬與母材的剝離。
 - 4. 銲前需施以250℃以上之預熱。

GH13Cr-4

產品特色:

- 銲接金屬約含有13% Cr 以及適當之Ni、Mo合金 元素。
- 銲接金屬的韌性、耐熱、 耐蝕及抗裂性均佳。

用途:

• 適用於熱交換器翼片、模 具、水車葉片及各種連鑄 導輪。

全熔填銲接金屬化學成份之一位						−例(w	/t%)
	С	Si	Mn	Ni	Cr	Мо	Fe
	0.15	0.60	0.20	4.30	13.0	0.90	Bal.

銲接金屬硬度值之一例 銲後原熊HRC 層數 第三層 44

7	尺寸(mm)及電流範圍(A)						
	線徑/長度	3.2/350	4.0/350	5.0/350			
ľ	平銲 100~140		140~190	180~230			

- ○使用注意事項: 1. 銲條使用前需先以300~350℃ 乾燥 60分鐘。
 - 2. 銲接層數以三層為限。
 - 3. 母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。

銲接作業要點(包藥及潛弧包藥銲線)

- 1.使用直流正電極(DCEP、DC+、直流逆極性) 銲接。
- 2.使用適當遮護氣體及流量,如下表所示

遮護氣體種類	遮護氣體流量 L/min		
CO ₂ 或5~20%CO ₂ +Ar	20~25		
無	_		

3.建議銲接參數(無氣遮護及氣體遮護包藥銲線)

線徑	1.2mm	1.6mm	2.4mm	2.8mm	
極性	DC+	DC+	DC+	DC+	
電流	150~250	175~350	200~400	230~450	
電壓	24~30	26~32	30~35	32~38	
伸出長度	15~25mm 15~25mm		25~40mm	25~45mm	
押山坟屋	有氣遮	護為主	無氣遮護		

註:詳細參數可參照單填產品目錄。

4.銲接參數及特性如下

建设设置	数及特性
送線速度(電流-Amp) ↑增加	熔填速率↑ 滲透深度↑ 入熱量↑
電壓(V) ↑增加	銲道寬度↑ 銲道平坦度↑ 氣孔↑
線材伸出長度 ↑増加	熔融速率↑ 銲濺物↑ 氣孔↑

5.建議銲接參數(潛弧銲線)

線徑	2.8mm	3.2mm
極性	DC+	DC+
電流(A)	280~350	320~400
電壓(V)	28~32	30~36
伸出長度(mm)	20~35	25~40
銲劑	中性銲劑	中性銲劑

硬面耐磨用包藥銲線

MXW MANG 3 | -

MXW MANG 1 -

產品特色:

- 為加工硬化型奧斯田鐵系之包藥銲● 適用於錐形碎礦機、壓碎機輥、 線。
- 用在錳鋼的修補和堆銲。
- 銲接金屬具高韌性,在高衝擊作業 下硬度會快速提高。

用途:

錘碎機、衝擊機桿、鐵軌岔心及 鉗具等之修補。

全熔填銲接金屬化學成份之一例 (wt%) C Si Mn Cr Ni Fe 8.0 0.3 14.0 3.0 0.5 Bal.

	銲接金屬特性									
耐磨	耐衝	機械	火焰	銲道	應力	抗拉	降伏	延伸	硬度	HRC
耗性	撃性	加工	切割	層數	消除裂紋	強度 N/mm²	強度 N/mm²	率 %	銲後 原態	加工 硬化
平	高	不好	不可以	二層 以上	無	844	562	32	20	52

銲接參數						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	170~230	250~300				
電壓	24~30	26~32				
伸出長度	15~30mm	20~35mm				
遮護氣體	無氣遮護 (亦可使用 CO₂ 或混合氣)	無氣遮護 (亦可使用 CO₂ 或混合氣)				

使用注意事項:

- 1.一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是無氣遮護之數據。

產品特色:

- 為加工硬化型奧斯田鐵系之包藥銲 線。
- 用在錳鋼的修補和堆銲。
- 銲接金屬具高韌性, 在高衝擊作業 下硬度會快速提高。

用途:

● 適用於錐形碎礦機、壓碎機輥、 鍾碎機、衝擊機桿、鐵軌岔心及 鉗具等之修補。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Ni	Fe		
0.29	0.15	17.3	16.9	0.8	Bal.		

				銲扫	安金屬 物	寺性				
耐磨	耐衝	機械	火焰	銲道	應力	抗拉	降伏	延伸	硬度	HRC
耗性	撃性	加工	切割	層數	消除 裂紋	強度 N/mm²	強度 N/mm²	率 %	銲後 原態	加工 硬化
平	高	不好	不可 以	二層以上	有	834	565	40	20	53

	舞接參數						
線徑	1.2mm	1.6mm					
極性	DC+	DC+					
電流	170~230	250~300					
電壓	24~30	26~32					
伸出長度	15~30mm	20~35mm					
遮護氣體	無氣遮護 (亦可使用CO₂或混合氣)	無氣遮護 (亦可使用CO₂或混合氣)					

- 1.一般不需要預熱及後熱,但多道銲時,為避免蠡裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是無氣遮護之數據。

MXW BU-O | -

產品特色:

- 屬於無氣遮護式硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬可耐衝擊及輕度磨耗。
- 作業性極佳,一般用於平銲銲接。
- 亦可作為緩衝銲層。

用途:

● 適用於傳動齒輪、車軸、泵浦、 工作輪軸、聯結器、鐵軌等之銲 補。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Мо	Fe	
0.08	0.19	0.98	0.77	0.16	Bal.	

			銲接金屬特中	生		
耐磨耗性	耐衝擊性	耐黏滯 磨耗性	機械加工性	熔填厚度	應力消除 裂紋	硬度 HRC
差	佳	好	容易	二層以上	無	29.4

。 						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	150~250	175~350				
電壓	22~26	24~28				
伸出長度	15~30mm	20~35mm				
遮護氣體	無氣遮護 (亦可使用 CO₂ 或混合氣)	無氣遮護 (亦可使用 CO₂ 或混合氣)				

使用注意事項:

- 1.一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是無氣遮護之數據。

MXW BU-G -

產品特色:

- ◆ 為氣體遮護型硬面包藥銲線。
- 銲接金屬兼具耐衝擊及輕度磨耗。
- 作業性極佳,可用於全姿勢銲接。
- 亦可作為緩衝銲層。

用途:

• 適用於傳動齒輪、車軸、泵浦、 工作輪軸、聯結器、鐵軌等之銲 補。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Мо	Fe	
0.10	0.50	1.20	1.2	0.30	Bal.	

銲接金屬特性						
耐磨耗性	耐衝擊性	耐黏滯 磨耗性	機械加工性	熔填厚度	應力消除 裂紋	硬度 HRC
差	佳	好	容易	二層以上	無	24

	銲接參數				
線徑	1.2mm	1.6mm			
極性	DC+	DC+			
電流	150~250	175~350			
電壓	22~26	24~28			
伸出長度	15~25mm	15~25mm			
遮護氣體	CO₂或混合氣	CO₂或混合氣			

- 1.一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是使用CO2為遮護氣體之數據。

金屬對金屬間磨耗用

MXW SUPER BU-G | -

產品特色:

• 可搭配中性銲劑之潛弧銲線, 銲接 金屬為低碳、低合金之麻田散鐵組

MXW K104-S | -

- 剝渣性能良好。
- 亦可作緩衝層打底用。
- 具有極優良之耐衝擊及抗塑性變形 能力。
- 適用於低磨損高衝擊工件之修補。

用途:

● 適用於惰輪、滾輪等緩衝層用及 鐵軌、鏈環、軸頸等表面銲補

全熔填銲接金屬化學成份之一例 (wt%)					
С	Si	Mn	Cr	Fe	
80.0	0.60	1.8	1.1	Bal.	

7			銲接金屬特性		
	耐磨耗性	耐衝擊性	機械加工性	應力消除 裂紋	硬度 HRC
	差	優	優良,可用火 焰切割	無	24

	銲接參數	
線徑	2.8mm	3.2mm
極性	DC+	DC+
電流	280~350	320~400
電壓	28~32	30~36
伸出長度	20~35mm	25~40mm
銲劑	中性銲劑	中性銲劑

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

產品特色:

- 銲接金屬兼具耐衝擊及輕度磨耗。
- 作業性極佳,可用於全姿勢銲接。
- 亦可用於需承受高壓應力之銲件。

用途:

• 適用於傳動齒輪、車軸、空樞、 疏浚機泵浦、推土機等之銲補。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Мо	Fe	
0.12	0.44	1.68	1.26	0.30	Bal.	

				銲接金屬特	生		
Ī	耐磨耗性	耐衝擊性	耐黏滯 磨耗性	機械加工性	熔填厚度	應力消除 裂紋	硬度 HRC
	低	好	好	容易	二層以上	無	34

	銲接參數				
線徑	1.2mm	1.6mm			
極性	DC+	DC+			
電流	150~250	175~350			
電壓	22~26	24~28			
伸出長度	15~25mm	15~25mm			
遮護氣體	CO₂或混合氣	CO₂或混合氣			

- 1. 一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是使用CO2為遮護氣體之數據。

金屬對金屬間磨耗用

MXW BB-G -

產品特色:

- 為氣體遮護型硬面包藥銲線。
- 銲接金屬兼具耐衝擊及輕度磨耗。
- 作業性極佳,可用於全姿勢銲接。
- 亦可用於需承受高壓應力之銲件。

用途:

● 適合於傳動齒輪、惰輪、滑輪、 車軸、履帶、泥斗、鏈帶、鏟 具、刀刃。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Мо	Fe	
0.20	0.54	1.18	2.09	0.53	Bal.	

銲接金屬特性						
耐磨耗性	耐衝擊性	耐黏滯 磨耗性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
低	好	優	容易	三層	無	44

線徑	1.2mm	1.6mm
極性	DC+	DC+
電流	150~250	175~350
電壓	22~26	24~28
伸出長度	15~25mm	15~25mm
遮護氣體	CO₂或混合氣	CO₂或混合氣

使用注意事項:

- 1. 一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是使用CO₂為遮護氣體之數據。

MXW 102-G

產品特色:

- 熱作工具鋼銲補用之氣體遮護型包 藥銲線。
- 銲接金屬具有耐高應力磨耗、耐熱 疲勞、粘滯磨耗等特性。

用途:

- 適用於高(壓)應力、高衝擊之中度磨耗的場合,也可用於工具 鋼之修補。
- 可銲於一般碳鋼及低合金鋼機件□□□<l>□□□□□□□</l
- 主要適銲工件有起重輪、齒輪、模具、切刀、眼膜及各式輥輪等。

全熔填銲接金屬化學成份之一例 (wt%)									
С	Si	Mn	Cr	Мо	W	V	Fe		
0.29	0.29 0.39 1.76 6.8 1.3 1.28 0.2 Bal.								

銲接金屬特性							
耐磨 耗性	耐衝 擊性	機械加工性	銲道 厚度	應力消除 裂紋	硬度 HRC		
中等	好	中等	二層	無	52		

銲接參數						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	150~250	175~350				
電壓	22~26	24~28				
伸出長度	15~25mm	15~25mm				
遮護氣體	80%Ar+20%CO ₂	80%Ar+20%CO ₂				

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

產品介紹

金屬對金屬間磨耗用

產品特色:

- 麻田散鐵系合金熱作工具鋼銲補之● 主要適銲工件有起重機、齒輪、 潛弧銲硬面銲線。
- 搭配中性銲劑。
- 用於需要耐高應力、高衝擊之中度 磨耗的工件。
- 脱渣性佳。

用途:

切刀、眼模,模具及各式滾輪 等。

全熔填銲接金屬化學成份之一例 (wt%) С Si Mn Cr Mo V Fe 0.3 1.2 1.2 6.8 1.2 1.2 0.2 Bal.

	。 						
耐磨耗性	耐衝擊性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC		
中等	好	中等	三層	無	50		

	銲接參數						
線徑	2.8mm	3.2mm					
極性	DC+	DC+					
電流	280~350	320~400					
電壓	28~32	30~36					
伸出長度	20~35mm	25~40mm					
銲劑	中性銲劑	中性銲劑					

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

產品特色:

- 低合金成份之潛弧銲硬面銲線。
- 搭配中性銲劑。
- 適用於金屬與金屬間之磨耗。
- 脱渣性佳。

用途:

• 主要適銲工件有牽引機、天車 輪、齒輪、吊車惰輪及各式滾輪 等。

全熔填銲接金屬化學成份之一例 (wt%)									
С	C Si Mn Cr Mo V Fe								
0.20	0.20 0.7 2.6 2.8 0.6 0.2 Bal.								

7	銲接金屬特性							
	耐磨耗性	耐衝擊性	銲道厚度	應力消除 裂紋	硬度 HRC			
	中低	佳	三層	無	45			

銲接參數						
線徑	2.8mm	3.2mm				
極性	DC+	DC+				
電流	280~350	320~400				
電壓	28~32	30~36				
伸出長度	20~35mm	25~40mm				
銲劑	中性銲劑	中性銲劑				

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

金屬與砂土間磨耗用

產品特色:

- 麻田散鐵系合金使用於熱作工具鋼● 主要適銲工件有起重機、齒輪、 銲補之潛弧銲硬面銲線。
- 脱渣性佳。
- ●用於需要耐高應力、高衝擊之輕度 磨耗的工件。

用途:

切刀、眼模,模具及各式滾輪 等。

全熔填銲接金屬化學成份之一例 (wt%)								
С	C Si Mn Cr Mo Fe							
0.14	0.14 0.4 1.8 2.2 0.3 Bal.							

	銲接金屬特性						
耐磨 耗性	耐衝 撃性	機械加工性	銲道 厚度	應力消除 裂紋	硬度 HRC		
低	好	中等	不限	無	39		

	銲接參數						
線徑	2.8mm	3.2mm					
極性	DC+	DC+					
電流	280~350	320~400					
電壓	28~32	30~36					
伸出長度	20~35mm	25~40mm					
銲劑	中性銲劑	中性銲劑					

使用注意事項:

材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

MXW DD-G

產品特色:

- 作業性佳,可全姿勢銲接。
- 銲接金屬兼具耐衝擊性及磨耗性。
- 可耐金屬與金屬間及金屬與砂土間 之磨耗。

用途:

• 適合於幫浦軸套、水泥攪拌器、 疏浚切刀或挖刀頂緣、攪拌螺旋 葉、農用剷具。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Мо	Fe		
0.56	0.56	1.42	5.6	0.25	Bal.		

。 							
						硬度 HRC	
好	好	好	僅可研磨	三層	無	57	

銲接參數						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	150~250	175~350				
電壓	22~26	24~28				
伸出長度	15~25mm	15~25mm				
遮護氣體	CO ₂	CO ₂				

使用注意事項:

一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照銲 接注意事項之表一(147頁)。

金屬與砂土間磨耗用

MXW 969-G

產品特色:

- 銲接金屬為自硬性麻田散鐵組織。
- 可耐高應力磨耗、熱疲勞及粘滯磨 耗等特性。
- 金屬與金屬及金屬與砂土間耐磨耗性佳。

用途:

● 適合於幫浦軸套、水泥攪拌器、 疏浚切刀或挖刀頂緣、攪拌螺旋 葉及農用鏟具。

全熔填銲接金屬化學成份之一例 (wt%)								
C Si Mn Cr Mo Fe								
0.6 1.5 1.6 6.6 0.7 Bal.								

銲接金屬特性						
耐磨耗性	耐衝擊性	銲道厚度	應力消除 裂紋	硬度 HRC		
好	好	三層	無	55		

	。 							
線徑	0.9mm	1.2mm	1.6mm					
極性	DC+	DC+	DC+					
電流	100~200	150~250	175~350					
電壓	18~22	22~26	24~28					
伸出長度	10~20mm	15~25mm	15~25mm					
遮護氣體	80%Ar+20%CO ₂	80%Ar+20%CO ₂	80%Ar+20%CO ₂					

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

MXW 969-0

產品特色:

- 銲接金屬為自硬性麻田散鐵組織。
- ◆ 為無氣遮護型硬面包藥銲線。
- 可耐高應力磨耗、熱疲勞及粘滯磨 耗等特性。
- 金屬與金屬及金屬與砂土間耐磨耗 性佳。

用途:

● 適合於幫浦軸套、水泥攪拌機、 疏浚切刀或挖刀頂緣、攪拌螺旋 葉等。

全熔填銲接金屬化學成份之一例 (wt%)							
C Si Mn Cr Mo Fe							
0.5 0.24 1.43 6.4 0.59 Bal.							

		銲接金屬特性		
耐磨耗性	耐衝擊性	銲道厚度	應力消除 裂紋	硬度 HRC
好	好	三層	無	56

銲接參數							
線徑	1.2mm	1.6mm	2.4mm				
極性	DC+	DC+	DC+				
電流	150~250	175~300	200~380				
電壓	22~30	24~32	30~35				
伸出長度	20~30mm	20~35mm	25~40mm				
遮護氣體	不需要	不需要	不需要				

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

金屬與砂土

MXW M7-G

產品特色:

- 相當於高速工具鋼之成份組織。
- 自硬性極高,耐衝擊磨耗性佳,可耐高應力的嚴重磨耗。
- 耐熱磨耗可達540℃。
- 銲接金屬為含多種小型碳化物之麻 田散鐵組織。
- 適用於高應力工件之修補。

用途:

● 適用於眼膜、切斷刀、刮刀、鑽 刃、壓軋滾輪、擠壓螺桿及農耕 機具等之硬面銲補。

全熔填銲接金屬化學成份之一例 (wt%)									
С	C Si Mn Cr Mo V W Fe								
0.95 0.73 0.42 4.08 8.43 0.90 1.94 Bal.									

銲接金屬特性						
耐磨耗性 耐衝擊性 耐熱滯 機械加工性 銲道厚度 研RC					7 -17	
好	好	優	僅可研磨	三層	62	

銲接參數						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	150~250	175~350				
電壓	22~26	24~30				
伸出長度	15~25mm	15~25mm				
遮護氣體	80%Ar+20%CO ₂	80%Ar+20%CO ₂				

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

MXW D

產品特色:

- 為無氣遮護型硬面包藥銲線(亦可 選擇性使用遮護氣體)。
- 銲接金屬可耐中度衝擊及中度磨耗。
- ●可用於金屬與砂土間之高壓應力磨 耗。
- ●作業性佳,可全姿勢銲接。

用涂:

- ・煉油業:鑽孔工具、工具接頭及 鑽孔軸環。
- 農耕工具:刮刀、犁、錘。
- ▼煤礦業:鑽頭桿、螺旋鑽軸環、錘碎機、滾筒碎石機、鏟斗、鏟齒。
- ●燒窯業:螺旋鑽、給料器制動 塊、捏泥機槳及輸送機螺桿。
- ●建築業:瀝青混合器、葉片、 鏟斗、鏟齒、挖溝機齒。

全熔填銲接金屬化學成份之一例 (wt%)								
C Si Mn Cr Mo 其它 Fe								
2.0 1.0 0.2 8.0 0.4 0.6 Bal.								

銲接金屬特性						
耐磨耗性	耐衝擊性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC	
優	中等	僅可研磨	三層	有	64	

銲接參數						
線徑	0.9mm	1.2mm	1.6mm			
極性	DC+	DC+	DC+			
電流	100~200	150~250	175~350			
電壓	20~26	24~30	26~32			
伸出長度	12~20mm	15~30mm	20~35mm			
遮護氣體	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO ₂或 混合氣)			

- 1. 一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是無氣遮護之數據。

MXW R117 | -

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬耐磨耗及耐衝擊性佳。
- 銲道表面有少許的應力消除裂紋。

用途:

● 適合於錐形壓碎機承具及外罩、 錘碎機、蔗刀及壓碎機輥。

全熔填銲接金屬化學成份之一例 (wt%)							
C Si Mn Cr Mo Fe							
2.3 1.2 1.4 9.6 1.2 Bal.							

耐磨耗性 耐衝擊性 銲道厚度 硬度 HRC						
優	優	二層	45			

	。						
線徑	1.2mm	1.6mm					
極性	DC+	DC+					
電流	150~250	175~350					
電壓	24~30	26~32					
伸出長度	20~30mm	20~35mm					
遮護氣體	無氣遮護 (亦可使用 CO₂ 或混合氣)	無氣遮護 (亦可使用 CO₂ 或混合氣)					

使用注意事項:

- 1.一般不需要預熱及後熱,但多道銲時,為避免龜裂,母材預熱温度及銲道間温度可參照 銲接注意事項之表一(147頁)。
- 2.本頁表中數值是無氣遮護之數據。

MXW R100

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬為高碳高鉻型合金。
- 可耐低、中度衝擊之嚴重磨耗。
- 耐熱磨耗可達600℃。

用途:

● 適用於磨煤輪、壓碎機滾輪、農 耕工具、鏟齒、螺旋鑽、熱渣軸 管,抽氣風扇螺桿葉片等硬面修 補。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Мо	Fe		
4.8	1.5	26.5	1.0	Bal.			

銲接金屬特性						
耐磨耗性	耐衝擊性	耐高温 磨耗	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
優	低至中度	600 ℃	僅可研磨	_層	合理的	60

銲接參數						
線徑	1.6mm	2.4mm	2.8mm			
極性	DC+	DC+	DC+			
電流	200~350	230~380	300~450			
電壓	26~32	30~35	32~38			
伸出長度	20~30mm	20~35mm	25~45mm			
遮護氣體	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護			

- 1.立銲宜採用下進銲接;多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度 可控制在約10~15mm範圍內,以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

MXW R101

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬為高碳高鉻型合金。
- 可耐低、中度衝擊之嚴重磨耗。
- 耐熱磨耗可達600℃。

用涂:

• 嫡用於鏟齒、葉片、粗齒鋸柄、 鏟刀側、切刀、鏟斗內側及鏟 口、農耕工具、輸送帶螺桿、螺 旋鑽及木鑽等硬面修補。

全熔填銲接金屬化學成份之一例 (wt%) C Si Mn Cr 其它 Fe 5.11 1.26 0.83 19.41 0.3 Bal.

	銲接金屬特性						
耐磨耗性	耐磨耗性 耐衝擊性 耐高温 機械加工性 銲道厚度 應力消除 硬度 磨耗 機械加工性 銲道厚度 2000 和RC						
優	低至中度	600℃	僅可研磨	二層	合理的	61	

	銲接參數	
線徑	1.2mm	1.6mm
極性	DC+	DC+
電流	150~250	175~350
電壓	24~30	26~32
伸出長度	20~25mm	20~30mm
遮護氣體	無氣遮護 (亦可使用CO₂或混合氣)	無氣遮護 (亦可使用CO₂或混合氣)

使用注意事項:

- 1.多道銲時採用直行銲珠,可使應力消除裂紋緊密堅實月裂紋長度可控制在約10~15mm範 圍內,以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬為高碳高鉻型合金。
- 可耐低、中度衝擊之嚴重磨耗。
- 耐熱磨耗可達600℃。

用涂:

適用於磨煤輪、壓碎機滾輪、農 耕工具、鏟齒、螺旋鑽、熱渣 軸管、抽氣風扇螺桿葉片等硬面 修補。

全熔填銲接金屬化學成份之一例 (wt%)							
C Si Mn Cr Mo							
5.5 0.64 0.85 27.3 0.04 Bal.							

銲接金屬特性						
耐磨耗性	耐衝擊性	耐高温 磨耗	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
優	低度	600 ℃	僅可研磨		合理的	61

	銲接	參數	
線徑	1.2mm	1.6mm	2.8mm
極性	DC+	DC+	DC+
電流	150~250	175~350	300~450
電壓	24~30	26~32	32~38
伸出長度	20~25mm	20~30mm	25~45mm
遮護氣體	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護

使用注意事項:

- 1.立銲宜採用下進銲接;多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度 可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

產品介紹

MXW R100SHD | -

產品特色:

- 屬於無氣遮護型硬面包藥銲線。
- 銲接金屬為高碳高鉻型合金。
- 可耐低、中度衝擊之嚴重磨耗。
- ●耐熱磨耗可達600℃。

用途:

●適用於磨煤輪、壓碎機滾輪、農耕工具、鏟齒、螺旋鑽、熱渣軸管、抽氣風扇螺桿葉片等硬面修補。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Fe			
5.2	1.0	1.48	36.0	Bal.			

。 						
		耐高温 磨耗	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
優	低度	600 ℃	僅可研磨	層	合理的	62

	銲接參數			
線徑	2.8mm			
極性	DC+			
電流	300~450			
電壓	32~38			
伸出長度	25~45mm			
遮護氣體	無氣遮護			

使用注意事項:

- 1.多道銲時採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

MXW 62-0 | -

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦可選擇性使用遮護氣體)。
- 銲接金屬為高碳高鉻型合金。
- 耐熱磨耗可達600℃。
- 銲接金屬之金相組織為大量的複合 碳化物,可以均匀分佈於強韌的基 質中達成高耐磨耗的效果。

用途:

●適用於磨煤輪、壓碎機滾輪、農耕工具、鏟齒、螺旋鑽、堆高機、抽器風扇、螺桿葉片等硬面修補。

	全熔填銲接金屬化學成份之一例 (wt%)								
С	Si	Mn	Cr	Мо	V	Fe			
5.5	1.0	1.8	23.0	1.2	3.5	Bal.			

。 						
耐磨耗性	耐衝擊性	應力消除 裂紋	機械加工性	銲道層數	硬度 HRC	
優	低度	合理的	僅可研磨	— —層	62	

銲接參數						
線徑	1.2mm	1.6mm	2.8mm			
極性	DC+	DC+	DC+			
電流	150~250	175~350	300~450			
電壓	24~30	26~32	32~38			
伸出長度	20~25mm	20~30mm	25~40mm			
遮護氣體	無氣遮護 (亦可使用 CO₂ 或混 合氣)	無氣遮護 (亦可使用 CO₂ 或混 合氣)	無氣遮護			

- 1.立銲宜採用下進銲接;多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

MXW 63-0 -

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦可選擇性使用遮護氣體)。
- 能耐高温磨耗,並具有耐低應力高 磨耗與抗腐蝕性。
- 銲接金屬之金相組織較62-O有更 多量的複合碳化物,可以均匀分佈 於強韌的基質中達成高耐磨耗的效果。
- 耐熱磨耗可達816℃。

用途:

- 鋼鐵工業:爪型破碎機、篩具、 耙器、熱渣軸管。
- 水泥業:螺桿、錐形燒結用輪及 高温爐內機件。
- 礦業:泥漿輸送管、箕型鏟齒及 挖掘機。

	全熔填銲接金屬化學成份之一例 (wt%)								
С	Si	Mn	Cr	Мо	Nb	W	V	Fe	
5.2	0.55	0.93	19.22	5.20	5.2	2.0	1.10	Bal.	

銲接金屬特性						
耐磨耗性	耐衝擊性	應力消除 裂紋	機械加工性	銲道層數	硬度 HRC	
優	低	有	僅可研磨	— —層	64	

	銲接參 數							
線徑	1.2mm	1.6mm	2.8mm					
極性	DC+	DC+	DC+					
電流	150~250	175~350	300~450					
電壓	24~30	26~32	32~38					
伸出長度	20~25mm	20~30mm	25~40mm					
遮護氣體	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護					

使用注意事項:

- 1.立銲宜採用下進銲接;多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2.母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

MXW 65-0

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦可選擇性使用遮護氣體)。
- 銲接金屬金相組織為高合金的複合 碳化物,均匀分佈於強韌的基體 中,達成硬面效果。
- 銲接金屬能耐高温磨耗,並具有耐 低應力高磨耗與抗腐蝕性。
- 耐熱磨耗可達650℃。

用涂:

- ●鋼鐵工業:爪型破碎機、篩具、 耙器、熱渣軸管。
- 水泥業:螺桿、錐形燒結用輪及 高温爐內機件。
- 礦業:泥漿輸送管、箕型鏟齒及 挖掘機。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Cr	Nb	Fe		
5.2	1.2	1.8	23.5	6.7	Bal.		

銲接金屬特性					
耐熱磨耗性	耐衝擊性	應力消除 裂紋	機械加工性	銲道厚度	硬度 HRC
650℃以下	低	有	僅可研磨	— —層	63

銲接參數						
線徑	1.2mm	1.6mm	2.8mm			
極性	DC+	DC+	DC+			
電流	150~250	175~350	300~450			
電壓	24~30	26~32	32~38			
伸出長度	20~25mm	20~30mm	25~40mm			
遮護氣體	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護 (亦可使用 CO₂ 或 混合氣)	無氣遮護			

- 1. 立銲宜採用下進銲接;多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 3.本頁表中數值是無氣遮護之數據。

MXW 66-0 -

產品特色:

- 屬於無氣遮護型硬面包藥銲線(亦 可選擇性使用遮護氣體)。
- 銲接金屬中除碳化鉻外,尚含高度 成份之釩元素,可形成大量的小型 碳化釩,更耐高硬度的砂岩磨耗。
- 銲接金屬能耐高温磨耗,並具有耐 低應力高磨耗與抗腐蝕性。
- 耐熱磨耗可達600℃。

用涂:

- 鋼鐵工業:爪型破碎機、篩具、 耙器、熱渣軸管。
- 水泥業:螺桿、錐形燒結用輪及 高温爐內機件。
- 礦業:泥漿輸送管、箕型鏟齒及 挖掘機。

	全熔填銲接金屬化學成份之一例 (wt%)						
С	C Si Mn Cr V Fe						
5.5 1.0 1.5 21.0 10.2 Bal.							

耐熱磨耗性	耐衝擊性	應力消除 裂紋	機械加工性	銲道厚度	硬度 HRC		
600℃以下	低	有	僅可研磨	_層	63		

金=	非接參數
線徑	2.8mm
極性	DC+
電流	300~450
電壓	32~38
伸出長度	25~40mm
遮護氣體	無氣遮護

使用注意事項:

- 1. 立銲官採用下進銲接:多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實且裂紋長度 可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

MXW 70-O

產品特色:

- 屬於無氣遮護型硬面包藥銲線。
- 銲接金屬金相組織為高合金的複合 碳化物,均匀分佈於強韌的基體 中,達成硬面效果。
- 銲接金屬能耐高温磨耗,並具有耐 低應力高磨耗與抗腐蝕性。
- 耐熱磨耗可達650℃。

用涂:

- 鋼鐵工業:爪型破碎機、篩具、 耙器、熱渣軸管。
- 水泥業:螺桿、錐形燒結用輪及 高温爐內機件。
- 礦業:泥漿輸送管、箕型鏟齒及 挖掘機。

全熔填銲接金屬化學成份之一例 (wt%)								
C Si Mn Cr Nb V 其它 Fe							Fe	
5.5	5.5 0.5 0.8 11.2 6.6 6.2 < 3.0 Bal.							

		銲接金屬特性		
耐熱磨耗性	耐衝擊性	應力消除 裂紋	銲道層數	硬度 HRC
650℃以下	低	有	二層	65

	銲接參數
線徑	2.8mm
極性	DC+
電流	300~450
電壓	32~38
伸出長度	25~40mm
遮護氣體	無氣遮護

- 1. 立銲官採用下進銲接:多道銲時,採用直行銲珠,可使應力消除裂紋緊密堅實目裂紋長度 可控制在約10~15mm範圍內以免銲接金屬與母材的剝離。
- 2. 母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

AWS A5.22 E410NiMoT1-1 JIS Z 3323 TS410NiMo-FC1

產品特色:

- 為有氣遮護型硬面包藥銲線。
- 銲接金屬為麻田散鐵組織。
- 銲接金屬抗裂性佳,並具高耐壓縮 磨耗,耐熱疲勞性亦佳。

用途:

●為連鑄導輪專用,也可適合各式 導輪之堆銲。

	全熔填銲接金屬化學成份之一例 (wt%)								
С	C Si Mn Ni Cr Mo Fe								
0.04 0.40 0.50 4.4 11.8 0.6 Bal.									

	銲接金屬特性							
耐磨耗性	耐熱疲勞性	抗裂性	抗拉強度 N/mm²	延伸率 %	硬度HRC (銲後原態)			
佳	佳	佳	923	18	42			

銲接參數						
線徑	1.2mm	1.6mm				
極性	DC+	DC+				
電流	150~250	200~300				
電壓	22~28	24~30				
伸出長度	15~25mm	15~25mm				
遮護氣體	CO₂或混合氣	CO₂或混合氣				

使用注意事項:

- 1.母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。
- 2.本頁表中數值是使用CO₂為遮護氣體之數據。

MXW K410NiMo-S -

產品特色:

- 銲接金屬為麻田散鐵組織之合成型 潛弧硬面銲線。
- 搭配中性銲劑。
- 銲接金屬抗裂性佳, 脱渣性能良好。
- 銲接金屬兼具耐熱疲勞、耐腐蝕及 耐磨耗。

用途:

● 適合於連鑄軋鋼輥輪、耐熱閥 門、渦輪葉片等表面銲補。

全熔填銲接金屬化學成份之一例 (wt%)								
С	C Si Mn Ni Cr Mo Fe							
0.04	0.04 0.5 1.0 4.1 12.5 0.55 Bal.							

銲接金屬特性							
耐磨耗性	耐熱疲勞性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC		
佳	好	可用碳化鎢 工具	三層	無	43		

	銲接參數
線徑	3.2mm
極性	DC+
電流	320~400
電壓	30~36
伸出長度	25~40mm
銲劑	中性銲劑

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

● 銲接金屬為麻田散鐵組織之合成型 潛弧硬面銲線。

MXW K420-S

- 搭配中性銲劑。
- 耐熱疲勞及耐腐蝕性佳。

用途:

• 適合於連鑄軋鋼輥輪、惰輪等表 面銲補用。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Cr	Fe		
0.18	0.50	1.2	12.8	Bal.		

耐磨耗性	耐熱疲勞性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
佳	優	可用碳化鎢 工具	三層	無	50

銲接參數			
線徑	3.2mm		
極性	DC+		
電流	320~400		
電壓	30~36		
伸出長度	25~40mm		
銲劑	中性銲劑		

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

產品特色:

- 銲接金屬為麻田散鐵組織之合成型 潛弧硬面銲線。
- 搭配中性銲劑。
- 耐熱疲勞及耐腐蝕性佳。
- 因添加了適量的合金元素可兼顧耐 裂性與耐磨耗性。

用途:

• 適合於連鑄軋鋼輥輪、耐熱閥 門、渦輪葉片等表面銲補用。

全熔填銲接金屬化學成份之一例 (wt%)						
С	Si	Mn	Ni	Cr	Мо	Fe
0.11	0.40	1.1	2.3	13.5	1.2	Bal.

銲接金屬特性					
耐磨耗性	耐熱疲勞性	機械加工性	銲道厚度	應力消除 裂紋	硬度 HRC
佳	好	可用碳化鎢 工具	三層	無	45

	銲接參數
線徑	3.2mm
極性	DC+
電流	320~400
電壓	30~36
伸出長度	25~40mm
銲劑	中性銲劑

使用注意事項:

母材預熱温度及銲道間温度可參照銲接注意事項之表一(147頁)。

材料特性簡介

鎳與鎳基合金依合金中的Ni、Cu、Cr、Fe及Mo等主要元素的含量等 級來分類,常見的有Ni、Ni-Cu、Ni-Mo、Ni-Cr-Fe、Ni-Cr-Mo、 Ni-Cr-Mo-Cu及Ni-Fe-Cr等合金。 純鎳中其他合金含量很低,分類上 以200系列數字表示;Ni-Cu為Monel合金,分類上以400系列數字表 示; Ni-Cr-Fe合金系列中, 若Ni元素佔優勢, 則為600系列的Inconel 合金;若Fe佔優勢,則為800系列的Incolov合金;至於Ni-Mo(Fe) 及Ni-Cu-Mo(W、Cu)則屬於Hastelloy合金的範疇。

註:本公司產品以鎳基合金為主,除上述之材料特性介紹外,其他説明 只出現「鎳基」字眼。

镍基合金銲接與一般碳鋼銲接比較,有下述之三個主要差異:

a. 銲接區域清潔要求:

鎳基合金

高镍合金曝露於大氣中表面易自然生成氧化膜,商業用純镍熔點在 1446℃,但氧化鎳熔點高達2090℃,因此銲接時不像銲接碳鋼時氧化 鐵與原來未氧化金屬一起熔融。換言之,銲接高鎳合金時,當母材已熔 融時此氧化物仍然為固體,殘留於銲道內部成為不易檢查出的夾渣,此 情形對機械性及耐蝕性影響極大。因此無論是銲接前或銲接後,必須確 定母材上已無外來雜質存在。接合區更須清除表面氧化物,厚的氧化膜 必須利用研磨、機械加丁或其他方式移除。

b. 金屬熔滴流動性不良

鎳基合金熔融金屬不如碳鋼金屬熔滴具有高潤濕性,故施銲人員的錯覺 以為提高電流便可以增加熔池潤濕效果,事實上使用大電流並無法改善 潤濕效果,反而造成更多缺陷。因為高熱亦將熔池內之脱氧劑蒸發,使 銲道更易形成氣孔。

c. 銲道的渗透較淺

鎳基合金的銲接,滲透力較淺,有時不如碳鋼銲接之1/2。因此開槽根 部的厚度須較薄。

鎳基合金及鎳基合金與不銹鋼、碳鋼、低合金鋼銲接的銲材匹配表

母材A			鎳及鵭	泉合金
1	母材B	碳鋼及低合金鋼	(Inconel) 鎳-鉻-鉬 合金(600系列)	(Incoloy) 鎳-鉻-鐵 合金(800系列)
	奧斯田鐵系	G309, G309L G309MoL, GNC132, GTN82, GMN82	GNC132, GNC112 GTN625, GMN625	GNC132, GNC182 GTN82, GMN82
不銹鋼	麻田散鐵系	G309, G309L GNC132 GTN82, GMN82	GNC132, GNC112 GTN625, GMN625	GNC132, GNC182 GTN82, GMN82
	G309L 肥粒鐵系 GNC132		GNC132, GNC112 GTN625, GMN625	GNC132, GNC182 GTN82, GMN82
	Nickel 純鎳	GNC132 GTN82, GMN82	GNC132, GNC112 GTN625, GMN625	GNC132, GNC182 GTN82, GMN82
鎳基	Monel 鎳-銅合金	GNC132 GTN82, GMN82	GNC132 GTN625, GMN625	GNC132 GTN82, GMN82
合金	Incoloy 鎳-鉻-鐵合金	GNC132, GNC112 GNC182, GTN82, GMN82	GNC132, GNC112 GTN625, GMN625 GTN82, GMN82	
	Inconel 鎳-鉻-鉬合金	GNC132, GNC112 GTN625, GMN625 GTN82, GMN82		

母材A		鎳及釒	臬合金	不金	秀鋼
		(Monel) 鎳-銅合金	(Nickel) 純鎳	肥粒鐵系	麻田散鐵系
	奧斯田鐵系	GNC132	GNC132,	G309, G309L GNC132	G309, G309L GNC132
不銹鋼	麻田散鐵系	GNC132	GNC132,	G309,	
	肥粒鐵系	GNC132	GNC132,		
 	Nickel 純鎳	GNC132			

銲接作業要點

- 1. 銲材的選用需與母材化學成份相同。
- 2. 銲接時,盡量使用較低電流以避免被覆燒損。若被覆燒損過於嚴重, 易導致銲道機械性能變差。
- 3.不需預熱,銲道間温度不可超過150℃。
- 4.引弧時,建議採用前進後退法銲接,以避免再起弧端發生氣孔。並盡 量使用短電弧銲接。當進行異種金屬銲接時,應盡可能避免銲道與母 材過度稀釋。
- 5.原則上以平銲或橫銲銲接姿勢為主, 銲條與銲道垂直方向保持約20° 傾斜,使電弧維持在熔池前端。
- 6. 镍合金的導熱性差, 銲接時入熱量過大易導致晶粒粗大, Ni-Mo及 Ni-Cr-Mo合金盡量使用較低電流,採直行銲道。若要織動應以棒徑3倍 為限。收尾時,需注意填滿弧坑並保持較低銲道間温度。
- 7. 镍金屬非常容易被鉛和硫脆化,產生熱裂。銲件母材表面的油汗、油 漆、灰塵等雜質務必確實清除乾淨。
- 8. 電流極性的説明:
 - DCEP(DC+):為直流正電極,銲條銲線或電極接正極,又稱作

直流反極性(DCRP)。

DCEN(DC-): 為直流負電極, 銲條銲線或電極接負極, 又稱作直流正

極性(DCSP)。

電銲條

- 低氫系直流專用鎳基銲條。
- 銲接性及作業性優良。
- 銲道美觀、耐裂性佳。
- 耐熱、耐蝕性極佳。
- 耐低温衝擊韌性佳。
- ●脱渣性佳。

用途:

適用於同等級鎳基合金母材銲 接;以及與低合金鋼、不銹鋼等 異種金屬的護面銲接。

全熔填銲接金屬化學成份之一例 (wt%)									
С	Si	Mn	Ni	Cr	Мо	Nb	Fe	Ti	
0.06	0.42	3.15	71.7	15.3	0.12	2.60	6.45	0.09	

銲接金屬(全銲道)機械性能之一例
抗拉強度 N/mm²	延伸率 %
655	41.2

尺寸(mm)及電流範圍(A)						
線徑 2.6 3.2 4.0						
平銲	65~85	70~110	95~150			

銲接注意事項:

- 1. 銲條使用前,需以300℃~350℃烘烤乾燥約60分鐘。
- 2.使用直流正電極(DC+)較佳,電弧宜短並以低電流銲接。
- 3.母材不潔及油污等異物須確實清除,以免影響銲道品質。
- 4.參見第201頁鎳合金電銲條銲接作業要點。

產品特色:

- 低氫系百流專用鎳基銲條。
- 銲接性及作業性優良。
- 銲道美觀、耐裂性佳。
- 耐低温衝擊韌性佳。
- 脱渣性佳。

用途:

適用於同等級鎳基合金母材及低 温用9%鎳鋼之銲接;並可做碳 鋼、不銹鋼及鎳鋼等異種金屬的 護面銲接。

全熔填銲接金屬化學成份之一例 (wt%)								
С	Si	Mn	Ni	Cr	Мо	Nb	Fe	Ti
0.06	0.52	2.44	69.9	15.2	1.85	2.25	7.63	0.08

銲接金屬(全銲道)機械性能之一例						
抗拉強度 N/mm²	延伸率	衝擊值 (-196℃)J				
605	42.5	62				

尺寸(mm)及電流範圍(A)						
線徑	2.6	3.2	4.0			
平銲	65~85	70~110	95~150			

銲接注意事項:

- 1. 銲條使用前,需以300℃~350℃烘烤乾燥約60分鐘。
- 2.使用直流正電極(DC+)較佳,電弧宜短並以低電流銲接。
- 3.母材不潔及油污等異物須確實清除,以免影響銲道品質。
- 4.參見第201頁鎳合金電銲條銲接作業要點。

- 低氫系百流專用鎳基銲條。
- 銲接性及作業性優良。
- 耐熱、耐蝕及耐氧化性優。
- 耐低温衝擊韌性佳。
- ●脱渣性佳。

用途:

• 適用於同等級鎳基合金母材及低 温用9%鎳鋼之銲接;並可做碳 鋼、不銹鋼及鎳鋼等異種金屬的 護面銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Nb	Fe	Ti
0.05	0.45	6.12	70.2	13.63	2.02	7.45	0.05

銲接金屬(全銲道)機械性能之一例						
抗拉強度 N/mm²	延伸率 %	衝擊值 (-196℃)J				
652	40	88				

尺寸(mm)及電流範圍(A)						
線徑	2.6	3.2	4.0			
平銲	65~85	70~110	95~150			

銲接注意事項:

- 1. 銲條使用前,需以300℃~350℃重新乾燥約60分鐘。
- 2.使用直流正電極(DC+)較佳,,電弧宜短並以低電流銲接。
- 3.母材不潔及油污等異物須確實清除,以免影響銲道品質。
- 4. 參見第201頁鎳合金電銲條銲接作業要點。

GNC 112

AWS A5.11 ENiCrMo-3 JIS Z 3224 DNiCrMo-3

產品特色:

- 低氫系百流專用鎳基銲條。
- 銲接性及作業性優良。
- 銲接金屬中含有Mo、Nb等合金元 素,具有優良耐熱及耐腐蝕性。
- 耐低温衝擊韌性佳。
- ●脱渣性佳。

用涂:

• 適用於同等級鎳基合金母材及低 温用9%鎳鋼之銲接;並可做碳 鋼、不銹鋼及鎳鋼等異種金屬的 護面銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Мо	Nb	Fe
0.06	0.28	0.82	62.70	20.48	8.43	3.45	3.73

	銲接金屬(全銲道)機械性能之一例						
	抗拉強度 N/mm²	延伸率	衝擊值 (-196℃) J				
ľ	778	38	65				

尺寸(mm)及電流範圍(A)							
線徑	2.6	3.2	4.0				
平銲	65~85	70~110	95~150				

銲接注意事項:

- 1. 銲條使用前,需以300℃~350℃烘烤乾燥約60分鐘。
- 2.使用直流正電極(DC+)較佳,電弧宜短並以低電流銲接。
- 3.母材不潔及油污等異物須確實清除,以免影響銲道品質。
- 4.參見第201頁鎳合金電銲條銲接作業要點。

- 低氫系直流專用鎳基銲條。
- 銲接性及作業性優良。
- 脱渣性佳。
- 銲接金屬中含有Mo、W等合金元 素,具有優異的高温硬化性以及耐 酸性腐蝕性能力,高温強度極佳。

用途:

• 適用於同等級鎳基合金母材之銲 接;以及與低合金鋼、不銹鋼等 異種金屬的護面銲接。

全熔填銲接金屬化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Мо	W	Fe
0.06	0.30	0.44	59.23	15.85	15.45	3.45	5.20

銲接金屬(全銲道)機械性能之一例
抗拉強度 N/mm²	延伸率 %
745	38

尺寸(mm)及電流範圍(A)					
線徑	2.6	3.2	4.0		
平銲	65~85	70~110	95~150		

銲接注意事項:

- 1. 銲條使用前,需以300℃~350℃烘烤乾燥約60分鐘。
- 2.使用直流正電極(DC+)較佳,電弧宜短並以低電流銲接。
- 3.母材不潔及油污等異物須確實清除,以免影響銲道品質。
- 4. 參見第201頁鎳合金電銲條銲接作業要點。

MIG·TIG用銲線

銲接作業要點

MIG銲接作業要點

- 1.使用脈衝電弧(首選建議)銲接時,即使銲接電流很低,電弧仍然穩 定。銲接電極以使用DC+為主。
- 2. 噴灑電弧或脈衝電弧需使用氦氣為遮護氣體,短路電弧則宜用氦氣較 佳。適當氣體流量為20~25L/min。
- 3. 氬- 氦混合氣亦適用於鎳基合金的銲接, 銲道會隨氦含量的增加而變 寬變平日滲透變淺。
- 4.Ni-Mo或Ni-Cr-Mo合金建議使用短路電弧,且以添加約1%O₂於氦氬 混合氣中,可使電弧穩定,以獲得較高堅實度之銲接金屬。
- 5.不需預熱, 銲道間温度不可超過150℃。
- 6.使用脈衝電弧時,官使用低限電流快速銲接,可避免熱裂的發生。

TIG銲接作業要點

- 1. 使用氦、氦或兩者混合氣為遮護氣體。
- 2.使用DC-電極,建議適當遮護氣體流量為10~15 L/min。
- 3. 單面銲接時,背面務必以惰性氣體保護以免氧化。
- 4.不需預熱, 銲道間温度不可超過150℃。
- 5.電弧電壓應調整使保持適當弧長為4~6 mm。
- 6. 盡量使用低電流,以避免熱裂的發生。

GTN82/GMN82

AWS A5.14 ERNiCr-3 JIS 7 3334 YNiCr-3

Nb

延伸率

39

2.4

1000

1.2

70~180 | 130~230 | 180~280

Fe

Τi

1.6

3.2

100

G 用 銲 線

產品介紹

棒材/線材化學成份之一例 (wt%)

0.03 0.18 3.2 Bal. 18.9 2.45 2.0 0.15

銲接金屬(全銲道)機械性能之一例

尺寸 (mm) 及電流範圍(A) (MIG)

0.9/1.0

製造尺寸 線徑/長度(mm)(TIG)

1000 1000

2.0

1.6

Cr

Ni

Mn

抗拉強度

N/mm²

680

線徑

雷流節圍

線徑

長度

產品特色:

• 銲接金屬之耐熱、耐 蝕、耐氧化性及機械性 質十分優異。

用涂:

• 適用於同等級鎳基合金母 材之銲接;以及與低合金 鋼、不銹鋼等異種金屬的 護面銲接。

遮護氣體:

• Ar+0.5~2.0%O₂ (GMAW)

100%Ar氣體(GTAW)

◎使用注意事項:

需通過射線檢查的銲件,應盡量使用脈衝電弧,宜使用噴灑移行的低限電流施銲。

GTN625/GMN625

AWS A5.14 ERNiCrMo-3 JIS Z 3334 YNiCrMo-3

產品特色:

● 銲接金屬中含有Mo、Nb 等合金元素,具有優良 的耐熱性、機械性及耐 腐蝕性。

用涂:

• 適用於同等級鎳基合金母 材及低温用9%鎳鋼之銲 接;並可做碳鋼、不銹鋼 及镍鋼等異種金屬的護面 銲接。

遮護氣體:

• Ar+0.5~2.0%O₂ (GMAW) 100%Ar氣體(GTAW)

	棒材/線材化學成份之一例 (wt%)							
С	Si	Mn	Ni	Cr	Nb	Мо	Fe	
0.05	0.20	0.25	64.8	21.5	3.75	9.10	0.35	

銲接金屬(全銲道)機械性能之一例 延伸率 抗拉強度 N/mm² 39 680

尺寸 (mm) A	尺寸 (mm) 及電流範圍(A) (MIG)							
線徑	0.9/1.0	1.2	1.6					
電流範圍	70~180	100~230	180~280					

製造尺寸	製造尺寸 線徑/長度(mm)(TIG)							
線徑		1.6	2.0	2.4	3.2			
長度		1000	1000	1000	1000			

◎使用注意事項:需通過射線檢查的銲件,應盡量使用脈衝電弧,宜使用噴灑移行的低限電流施銲。

材料特性簡介

- 1.凡碳含量在2.5~4%,矽0.5~3.0%,錳0.3~1.2%,磷0.1~0.6%, 硫0.02~0.12%之鐵合金均屬於鑄鐵,為要符合特定用途或功能另亦 添加了Cr、Cu、Ni、Mo、V或Ti等元素。
- 2. 鑄鐵在分類上有灰鑄鐵、可鍛鑄鐵、球狀石墨鑄鐵、及白鑄鐵等四大類, 基本上由碳及矽兩種元素來支配。
- 3.碳、矽含量低(C 3.0%以下、Si 2.0%以下)因沒有游離石墨的存在,屬白鑄鐵;高於上述含量則成為灰鑄鐵,(視基地中組織含量的不同又有肥粒鐵型、波來鐵型及兩者的混合型)。若於澆鑄過程中另外添加鈣、鎂等元素可使石墨形成球化組織而成球狀石墨鑄鐵,韌性與延展性較灰鑄鐵佳,機械性約與一般軟鋼相當;若將白鑄鐵長時間加熱在850℃~930℃温域使部分組織產生石墨化而成黑心可鍛鑄鐵,若温度高達1000℃且在氧化鐵粉末中長時間加熱則成為白心可鍛鑄鐵,可鍛鑄鐵機械性遠較灰鑄鐵佳。
- 4. 鑄鐵中的石墨在凝固過程會有膨脹現象,正好與金屬凝固收縮相互抵銷,所以碳、矽含量越高,凝固過程體積的收縮現象便越不明顯。
- 5. 鑄鐵因熔點彽,易被鑄造成形狀複雜的構件,工業上廣被使用,但因 有下述原因而導致銲接性不良:
 - a. 銲接金屬及銲件因急冷而發生第二層硬化效應,造成加工性與切削性劣化。
 - b.因碳含量高,銲接過程會產生大量的CO₂氣體而造成氣孔。
 - c.延性差, 銲接時的熱應力易使母材及熔合區產生龜裂。
 - d.因富含雪明碳鐵,銲接過程的熱脹冷縮變化太大,容易龜裂。
 - e.預熱温度常較一般工件高且銲接技術要求很高。

金	
木	7
及月	

		Į	
Į	F	ł	

۹.				
	В	8		
				8
_	٦			
-			7	
	0			
r				r
۲	4			L
)	r	ч	
r		L	_	r
┝				١.
L	J	┝	4	ľ
r		L	ú	P
b		r	٦	Ь
	1	Þ	4	r
			1	

	m	
U		

	鑄鐵 電銲 條 種類	渣系	預熱 溫度 ℃	銲接 鐵水 潤濕 性	銲道 色 與 材 致 性	接合施工	抗裂性	銲道 加工 性	熱影響區加性	合金系統	價格
(GC100	石墨	100~300	0	\triangle	0	0	0	0	Ni:99%	很貴
	GCI-1	石墨	100~300	0	\triangle	0	0	0	0	Ni:99%	很貴
	GC55	石墨	150~350	0	Δ	0	0	0	0	Ni:55%	貴
ľ	GCI-2	石墨	150~350	0	Δ	0	0	0	0	Ni:55%	貴
	GC0	低氫	100~350	0	0	0	Δ	Δ	Δ	低合金 低氫 Fe:Bal	便宜
	GCI-3	石墨	350~400	0	0	0	Δ	Δ	Δ	C: 3.2% /Fe: Bal	便宜

註:◎表極優良,○表良好,△表很差

- 1. 鑄件待銲部位表面或待銲補處的缺陷可用機械加工、研磨、剷削或其 他適當方法去除乾淨。油脂、污物及其他沾附在母材上的異物可用溶 劑清除,但若溶劑滲入母材內時,宜加熱至約400℃去除。若油脂太 厚,滲入母材表面太深,可將加熱温度提高至540℃完全去除。
- 2. 若銲槽開V型槽,建議開槽角度為60~80°,若工件太厚,則宜改成根 部半徑約4.8~13mm,開槽角度為20~25°的U型槽。
- 3. 銲接電流宜使用適銲範圍內各銲姿的低限電流,為能與母材充份熔合 日得到平順的銲道外觀,建議派遣技術精良銲工施銲。
- 4.以直行銲道為主,若要織動,幅寬以不超過棒徑的3倍為佳(銲道表 面寬度約為棒徑的4倍)。若為孔洞形銲道,邊緣需研磨加寬以擴大 銲接面, 使銲補面能平順。
- 5.若待銲鑄件體積龐大,為使銲接熱均匀分佈,可採間跳式銲接,目使 銲件在銲接過程中保持在微温狀態。
- 6. 熱影響區的硬度與母材成份及冷卻速度有關,適度的預熱可緩和熱影 響區的硬化。銲接金屬的硬度主要受稀釋所左右,需由銲接過程來控 管,單道銲接稀釋率較高,銲接金屬硬度亦相對較高。
- 7. 銲件為壓力件且銲道厚薄差異很大時,適度的預熱可使銲道冷卻均 匀,以得到較佳的抗裂效果。
- 8. 銲件在銲後仍處於高温(約540℃)狀態下可立即施以錘擊,但根部 及表面銲道不建議實施。
- 9. 大型工件銲道易裂,可採用銲前在銲槽面植螺栓的方式,螺栓直徑 約6.4~16mm, 植入銲槽母材內深約等於螺栓直徑月凸出銲槽面約 4.8~6.4mm,螺栓約佔銲道橫剖面25~35%的面積。

AWS A5.15 ENi-CI JIS 7 3252 DECNI

GC100

產品特色:

- 鑄鐵修補接合用石墨系 **銲條。**
- 可在低電流下施工,電 弧穩定,作業性能佳。
- 銲接金屬硬度較低,易 機械加工, 韌性佳、耐 龜裂性良好。

用途:

• 適用於各種鑄鐵件之修補 及堆銲。

全熔填銲接金屬化學成份之一例				(wt%)
С	Si	Mn	Ni	Fe
0.70	0.90	0.25	Bal.	4.0

銲接金屬(全銲道)機械性能之一例			
抗拉強度 N/mm²	硬度值		
412	166		

	A)		
線徑/長度	2.6/300	3.2/350	4.0/350
平銲	60~90	90~130	110~160

◎使用注意事項:參見第213頁鑄鐵電銲條作業要點。

電銲條

GC55

AWS A5.15 ENiFe-CI JIS Z 3252 DFCNiFe

產品特色:

- 鑄鐵修補接合用石墨系銲
- 作業性佳、銲接金屬耐龜 裂性佳。
- 全熔填銲接金屬成份約為 55% Ni, 45% Fe •
- 膨帳係數與鑄鐵相近,易 於機械加工。

用涂:

• 適用於各種鑄鐵件之修 鐵及一般鑄鐵修補與接 合。

全熔填銲接金屬化學成份之一例 (wt%) С Mn Ni Fe 0.89 1.13 0.61 55 Bal.

銲接金屬(全銲道)機械性能之一例 硬度值 HV 180

J	尺寸(mm)及	と電流範圍(A)
線徑/長度	2.6/300	3.2/350	4.0/350
平銲	65~85	70~110	95~150

補、球墨鑄鐵、合金鑄 ◎使用注意事項: 參見第213頁鑄鐵電銲條作業要點。

產品特色:

- 鑄鐵修補接合用低氫系銲條。
- ●於一般鑄鐵接合中,底層 先用GC100或GC55,其 餘銲層改用GC0可較為經 濟。

用途:

● 適用於高温且不須機械 加工的鑄鐵修補。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Р	S	Fe
1.1	0.75	0.56	0.023	0.008	Bal.

註:ESt不規定全熔填金屬化學成份,以上分析為參考 數據。

銲接金屬(全銲道)機械性能之一例

硬度值
HV
250

	尺寸(m	m)及電源	た範圍(A)	
線徑/長度	2.6/300	3.2/350	4.0/400	5.0/450
平銲	60~90	90~140	140~190	150~220

◎使用注意事項: 參見第213頁鑄鐵電銲條作業要點。

產品特色:

- 鑄鐵修補接合用石墨系 銲條。
- 作業性及耐龜裂性佳。
- 全熔填銲接金屬成份約 為55% Ni,45% Fe。

用涂:

適用於各種鑄鐵件諸如球 墨鑄鐵、合金鑄鐵及一般 鑄鐵的修補與接合。

全熔填銲接金屬化學成份之一的				分之一例	(Wt%)
	С	Si	Mn	Ni	Fe
	1.13	1.25	0.45	52	Bal.

銲接金屬(全銲道)機械性能之一例

业于1女业庙(工业+)1从1次1工HC人	וציטו	
硬度值		
HV		
180		

尺寸(mm)及電流範圍(A)					
線徑/長度	2.6/300	3.2/350	4.0/350		
平銲	65~85	70~110	95~150		

◎使用注意事項:參見第213頁鑄鐵電銲條作業要點。

GCI-1

AWS A5.15 ENi-CI JIS Z 3252 DFCNi

產品特色:

- 鑄鐵修補接合用石墨系 銲條。
- 可在低電流下施工,電 弧穩定,作業性能佳。
- ●機械加工性較同級品更 佳。

用途:

適用於各種鑄鐵件之修 補及堆銲。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Ni	Fe
0.70	0.81	0.75	Bal.	4.1

銲接金屬(全銲道)機械性能之一例

ル ⊤ 1	X 12 13 (12 17 12) 1X 1X 12 15 12	17:3	
	硬度值		
	HV		
	166		

尺寸(mm)及電流範圍(A)

	,		<i>'</i>
線徑/長度	2.6/300	3.2/350	4.0/350
平銲	60~90	90~130	110~160

◎使用注意事項:參見第213頁鑄鐵電銲條作業要點。

GCI-3

AWS A5.15 ESt JIS Z 3252 DFCFe

產品特色:

- 鑄鐵修補接合用石墨低氫 系銲條。
- ●於一般鑄鐵接合中,底層 先用GC100或GC55, 其餘銲層改用GCI-3可較 為經濟。

用途:

● 適用於高温且不須機械 加工鑄鐵修補與接合。

全熔填銲接金屬化學成份之一例 (wt%)

С	Si	Mn	Р	S	Fe
1.8	1.15	0.56	0.023	0.008	Bal.

註:ESt不規定全熔填金屬化學成份,以上分析為參考 數據。

銲接金屬(全銲道)機械性能之一例

硬度值
HV
250

尺寸(mm)及電流範圍(A)							
線徑/長度 2.6/30		3.2/350	4.0/400	5.0/450			
平銲	60~90	90~140	140~190	150~220			

◎使用注意事項: 參見第213頁鑄鐵電銲條作業要點。

GGC | -

產品特色:

- 可產生高温電弧及強力噴 射氣體,可獲得整齊美觀 的溝槽。
- 使用一般電銲機及電銲夾頭 即可操作,極經濟實用。
- 與碳精棒相較,其切割處 不致有滲碳增硬之虞。

尺寸(mm)及電流範圍(A) 【AC】線徑/長度3.2/3504.0/4005.0/450平銲150~180230~280280~330

◎使用注意事項: 1.鋼板與開槽棒的夾角,保持在10° 左右。銲條前端與割槽底部接觸, 吹掉熔融金屬,形成槽縫。

 2. 銲條過度吸濕易斷弧,使用前需以 70~100℃乾燥30~60分鐘。

用途:

切割開槽用

• 銲接部背面開槽專用銲條,用於夾渣等銲接缺陷的去除、開槽加工、鋼板的切斷、穿孔,亦可用於鑄鐵、高碳鋼、不銹鋼、高合金鋼及不易為瓦斯或碳弧切斷的非鐵金屬材料。

GOUGING CARBON

碳精棒

產品特色:

藉由碳精棒所產生的高 温電弧將金屬熔融,並 利用外加的高壓氣體, 將其吹除,以獲得整齊 美觀的溝槽。

用途:

● 銲接部背面開槽專用銲條,用於夾渣等銲接缺陷的去除、開槽加工、可用於 的切斷、穿孔,亦可用於 鑄鐵、高碳鋼、不銹鋼於 高合金鋼及非鐵材料等不 易為瓦斯或碳弧切斷的非 鐵金屬材料。

尺寸(mm)及電流範圍(A)【AC】									
線徑/長度	4.0/305	5.0/305	6.5/305	8.0/305					
平銲	150~250	200~300	200~350	300~450					
開槽寬度	6~8	7~9	9~11	10~12					
開槽深度	3~4	3~5	4~6	5~7					
母材去 除量 (g/cm)	6	10	15	24					

◎使用注意事項:板及開槽棒的角度,保持在10°左右。由碳棒前端與割槽底部接觸,吹掉熔融金屬,挖出槽溝。

AWS銲材規格(摘錄)

索引

AWS A5.1 / A5.1M: 2004 碳鋼遮護金屬電弧銲(電銲條)規格 AWS A5.4 / A5.4M: 2006 不銹鋼遮護金屬電弧銲(電銲條)規格 AWS A5.5 / A5.5M: 2006 低合金鋼遮護金屬電弧銲(電銲條)規格

AWS A5.9 / A5.9M: 2006 不銹鋼線材或棒材規格

條)規格

AWS A5.15-90R 鑄鐵電銲條及棒材規格

AWS A5.17 / A5.17M-97 碳鋼潛弧銲規格

AWS A5.18 / A5.18M: 2005 碳鋼氣體遮護電弧銲(線材及棒材) 規格

AWS A5.20 / A5.20M: 2005 碳鋼包藥銲線規格

AWS A5.22/A5.22M: 2010 不銹鋼包藥/包金屬粉銲線及銲棒規格

AWS A5.29 / A5.29M: 2005 低合金鋼包藥銲線規格

Specification for carbon Steel Electrodes for Shielded Metal Arc Welding

分類記號(強制性規定)

雷銲條記號**

銲接金屬(全銲道)最低抗拉強度記號,A5.1 規格單位為Ksi; A5.1M規格數值來自Mpa÷10 (見表一)

適用銲接姿勢、被覆系統及電流特性記號(見 表二)

E7018M〔E4918M〕符合大多數軍規要求(優 良衝擊韌性、低被覆吸濕率)包括被覆吸濕前 及吸濕後之比率及銲接金屬氫含量限制(強制 規定)(見表三及表四)

E XX YY EXXYY M

EXXYY-1 HZR

分類記號(非強制規定)

低氫系電銲條吸濕試驗要求。除E7018M 〔E4918M〕是強制規定必須檢驗以外,其餘電 銲條為選擇性檢驗項目。

低氫系電銲條擴散氫試驗要求。每100g全熔填 銲接金屬的擴散氫平均值不可超過Z ml;Z為 4.8或16(見表四)

E7016,E7018或E7024〔E4916, E4918 或E4924〕改善衝擊韌件要求以及E7024 〔E4924〕延性(伸長率)要求

註釋:

*.本規格採用U.S.Customary Unit (英制)及International System of Unit (SI公制) 現行兩種標稱單位。兩單位之間並不完全相等,標稱單位計算時應個別獨立引用。 原A5.1規格使用U.S. Customary 所列之標稱單位; A5.1M則使用SI所列之標稱單位。

**. "E" 的全文是Electrode,原指電極之意,主要在強調此填充金屬(銲材)也被用 來常作銲接時的電極。主要強調此銲材不但是填料金屬也是銲接時的電極。如:電銲條 (E)、GMAW的銲線(ER)以及FCAW的銲線(E)。

表一 銲接金屬(全銲道)抗拉強度要求

AWS規格		抗拉強度		降位	延伸率		
A5.1	A5.1M	A5.1 (ksi)	A5.1M (MPa)	A5.1 (ksi)	A5.1M (MPa)	%	
E6010	E4310	60	430	48	330	22	
E6011	E4311	60	430	48	330	22	
E6012	E4312	60	430	48	330	17	
E6013	E4313	60	430	48	330	17	
E6018	E4318	60	430	48	330	22	
E6019	E4319	60	430	48	330	22	
E6020	E4320	60	430	48	330	22	
E6022	E4322	60	430	未	規定	未規定	
E6027	E4327	60	430	48	330	22	
E7014	E4914	70	490	58	400	17	
E7015	E4915	70	490	58	400	22	
E7016	E4916	70	490	58	400	22	
E7018	E4918	70	490	58	400	22	
E7024	E4924	70	490	58	400	17	
E7027	E4927	70	490	58	400	22	
E7028	E4928	70	490	58	400	22	
E7048	E4948	70	490	58	400	22	
E7018M	E4918M	70	490	53~72	370~500	24	

表二碳鋼電銲條被覆種類、銲接姿勢及電流特性

AWS	規格	被覆系統	銲接姿勢 ⁽¹⁾	電流極性 (2)
A5.1	A5.1M	恢復术机		电流燃性(-/
E6010	E4310	高纖維素鈉系	F.V.OH.HF	DC(+)
E6011	E4311	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E6012	E4312	高氧化鈦鈉系	F.V.OH.HF	AC或DC(-)
E6013	E4313	高氧化鈦鉀系	F.V.OH.HF	AC或DC(±)
E6018	E4318	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E6019	E4319	鈦鐵礦系	F.V.OH.HF	AC或DC(±)
E6020	E4320	高氧化鐵系	F.HF	AC或DC(-)
E6022 ⁽³⁾	E4322	高氧化鐵系(4a)	F.HF	AC或DC(-)
E6027	E4327	鐵粉氧化鐵系	F.HF	AC,DC(+)或DC(-)
E7014	E4914	鐵粉氧化鈦系	F.V.OH.HF	AC或DC(±)
E7015	E4915	低氫鈉系	F.V.OH.HF	DC(+)
E7016	E4916	低氫鉀系	F.V.OH.HF	AC或DC(+)
E7018	E4918	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)

		,	
,	7		

AWS	規格	被覆系統	銲接姿勢 ⁽¹⁾	電流極性 (2)	
A5.1	A5.1M	恢復术机	叶汉安另 、/	电机型注(
E7018M	E4918M	鐵粉低氫鉀系	F.V.OH.HF	AC或DC (+)	
E7024	E4924	鐵粉氧化鈦系	F. HF	AC,DC(+)或DC(-)	
E7027	E4927	鐵粉氧化鐵系	F. HF	AC,DC(+)或DC(-)	
E7028	E7028 E4928		F. HF	AC或DC(+)	
E7048 E4948		鐵粉低氫系	F.OH.HF.V-d	AC或DC(+)	

備註1: 銲接姿勢説明

F:平銲; V:立銲; O:仰銲; H:橫銲或平角銲; V-down:立銲下進

備註2:電流極性説明

AC:交流; DC+:直流(正電極); DC-:直流(負電極); DC±:直流(正

電極或負電極)

備註3:E6022〔E4322〕為單道銲接專用

表三 衝擊韌性要求

AWS	規格	5個衝擊試片之其中3個平均值			
A5.1	A5.1M	最低平均值	最低單一值		
E6010,E6011,E6018	E4310,E4311,E4318				
E6027,E7015,E7016,	E4327,E4915,E4916,	27J (−30°C)	20J (−30°C)		
E7018,E7027,E7048	E4918,E4927,E4948				
E6019	E4319	27J (−20°C)	20J (−20°C)		
E7028	E4928				
E6012,E6013 E6020	E4312,E4313 E4320	未規定	未規定		
E6022,E7014,E7024	E4322,E4914,E4924	八水足	N/MILE		
E7016-1	E4916-1	27J (−45°C)	20J (−45°C)		
E7018-1	E4918-1	273 (430)	200 (40 0)		
E7024-1	E4924-1	27J (−20°C)	20J (−20°C)		
		5個衝擊試片中其中5個平均值			
E7018M	E4918M	67J (−30°C)	54J (−30°C)		

表四 銲接金屬氫含量限制

AWS	規格	擴散氫記號	銲接金屬擴散氫含量平均值
A5.1	A5.1M	須用以至いるし分が	ml/100g
E6018	E4318	H16	16
E7015	E4915	1110	10
E7016	E4916	H8	8
E7018	E4918		
E7028	E4928	H4	4
E7048	E4948	117	7

表五 全熔填銲接金屬化學成份要求

AWS規格						化學成	份 Wt	%a					
A5.1	A5.1M	С	Si	Mn	Р	S	Ni	Cr	Мо	٧	Mn+Ni+V +Cr+Mo		
E6010	E4310												
E6011	E4311												
E6012	E4312												
E6013	E4313	0.20	1.00	1.20	N.S.	N.S.	0.30	0.20	0.30	0.08	N.S.b		
E6019	E4319												
E6020	E4320												
E6027	E4327												
E6018	E4318	0.03	0.40	0.60	0.025	0.015	0.30	0.20	0.30	0.08	N.S.		
E7015	E4915	0.15	0.90	1.25	0.035	0.035	0.30	0.20	0.30	0.08	1.50		
E7016	E4916	0.15	0.75	1.60	0.035	0.035	0.30	0.20	0.30	0.08	1.75		
E7018	E4918	0.15	0.75	1.60	0.035	0.035	0.30	0.20	0.30	0.08	1.75		
E7014	E4914	0.15	0.90	1.25	0.035	0.035	0.30	0.20	0.30	0.08	1.50		
E7024	E4924	0.15	0.90	1.25	0.035	0.035	0.30	0.20	0.30	0.08	1.50		
E7027	E4927	0.15	0.75	1.60	0.035	0.035	0.30	0.20	0.30	0.08	1.75		
E7028	E4928	0.15	0.90	1.60	0.035	0.035	0.30	0.20	0.30	0.08	1.75		
E7048	E4948	0.15	0.90	1.60	0.035	0.035	0.30	0.20	0.30	0.08	1.75		
E7018M	E4918M	0.12	0.80	0.40~ 1.60	0.030	0.020	0.25	0.15	0.35	0.05	N.S. ^b		

備註:

- a. 單一值為最大值
- b. N.S.表示未特別規定

AWS A5.1 · A5.1M

W

S

軟鋼及高張力鋼電銲條特性說明 (AWS A5.1 / 5.1M)

AWS E4310 E4311〔E6010 E6011〕 高纖維素系

特性:

- ●被覆劑中含有30%以上的有機物, 銲接時因有機物瞬間燃燒, 產生強勁、高滲透力的噴灑狀電弧。銲渣層極薄、易碎、容易被脱除, 有時少到未能完全覆蓋整個銲道。
- 銲接後的銲道缺陷率低,最大特色是熔池鐵水快速凝固,非常適合管路對接,滲透性佳,可連續施銲目不致過熱而造成銲件被熔透。
- E6010除了DC+直流專用外,在銲接應用、機械性能與作業性上均與 E6011相當。

用途:

- 適合全姿勢銲接,由於被覆具有極高的彈性及塑性,銲條可被彎折以 進行許多困難角度或空間狹窄銲件的銲接。
- 常用於銲接中、薄板單面開槽的根部銲道(單邊銲,雙邊成形優)、 窄縫之高壓管路以及表面有輕度油汗或鍍鋅鋼板等銲件之銲接。

AWS E4313 [E6013] 高氧化鈦系

特性:

- ●被覆劑中約含有35%左右氧化鈦(titania)。此外,被覆中另添加部份鐵粉以增加熔填效率。所產生電弧極為穩定,穿透力弱。再引弧性 佳,經冷卻一段時間後,仍能迅速起弧繼續施銲。
- 銲濺物量少且細小。銲渣流動性佳,只要銲接電流適當, 銲渣會自動 剝落, 銲道表面光滑細緻。

用途:

線徑4.0mm以下可進行立銲下進,鐵水跟隨穩定而不會下淌,銲渣可 自動剝落。由於滲透力淺,多用於薄板、輕型鋼架及日常鐵製用品之 銲接。

AWS E4319〔E6019〕 鈦鐵礦系

特件:

- ●被覆劑中約含有30%氧化鐵及氧化鈦(FeO+TiO₂),屬於酸性渣系 銲條,銲渣黏度低、擴散性佳、鐵水跟隨快,銲道寬度較一般酸性銲 條寬。
- 由於具有酸性玻璃質渣,脱渣性佳。銲道紋路細緻而美觀。
- ●因電弧力強滲透深,多適用於中厚板(25mm以下)銲件的銲接。

用涂:

- 常用在船體、橋樑、車輛、輕型鋼構、高壓容器、機械結構等銲件的 銲接。
- ●線徑4.0mm以下可進行全姿勢銲接(除立銲下進以外);5.0mm以 上滴銲銲姿以平銲或平角銲為主,若需織動,幅寬以線徑3倍為限。

AWS E4327 [E6027] 鐵粉氧化鐵系

特性:

- ●被覆劑中主要成份為氧化鐵(iron oxide),另外添加多量鐵粉以增加熔填效率。被覆劑重量佔整支銲條的50%以上。屬酸性渣,銲渣黏度彽、鐵水流動快、擴散性佳。銲渣硬脆,能自動翹開,脱渣容易。電弧力適中,銲濺物少。
- 銲接姿勢以平銲及水平角銲為主,水平角銲銲接時銲道外觀為平坦或 微凹,波紋細緻、美觀目光亮。

用涂:

- 可使用較高的銲接電流,以配合高銲接速度及速率。
- 多用於組合型鋼如H型鋼及T型鋼之重力式半自動銲接。

AWS E4914〔E7014〕 高氧化鈦系

特性:

- ●被覆系統類似AWS E6013,被覆劑中約含有35%氧化鈦(titania)。較E6013添加更多鐵粉,可容許較高的適銲電流,以獲得更高的熔填效率。
- 銲渣凝固快速,可進行全姿勢銲接,尤其立銲下進時,熔渣跟隨穩 定,鐵水不致下淌,銲道平坦而略凹,波紋美觀平順。
- ●電弧集中且穩定,脱渣性與銲道成形性佳。

用途:

適用於中厚或薄板的結構物之銲接。

AWS E4916〔E7016 〕 低氫系

特性:

●被覆中含有高量碳酸鹽類及氟化物,屬鹼性渣系。銲接時,由於碳酸鹽的分解,釋放出CO₂氣體,可有效降低氫氣滲入銲道中。此外,低氫系被覆系統脱P、S效果良好,銲接金屬中P、S含量較一般酸性銲條低的許多。

W

S

銲材規格

- ●熔渣與鐵水的距離較遠,可使氣體充份溢出;應使用短電弧銲接,可 避免有害氣體侵入。
- 熔滴及銲濺物顆粒較大, 銲道紋路較為粗糙。

用涂:

- ●多用於重型機械、鋼結構、造船、橋樑等銲件主要結構的銲接。
- 線徑4.0mm(含)以下可進行全姿勢銲接,線徑4.0mm以上則常用 於平銲及平角銲。

AWS E4918 [E7018] 鐵粉低氫系

特性:

- ●被覆系統與E7016相似,並額外加入相當高量鐵粉,以增加熔填效率。被覆較E7016厚,可容許較高的適銲電流。
- 電流種類為AC或DC(±)。銲接時電弧宜短,可使熔池有較佳保護 效果。電弧穩定,滲透強度中等,銲濺量低。
- ●可進行全姿勢銲接(除立銲下進以外),波紋較E7016細緻。

用途:

- 多用於重型機械、鋼結構、造船、橋樑等銲件主要結構的銲接。
- 線徑4.0mm(含)以下可進行全姿勢銲接,線徑4.0mm以上則常用 於平銲及平角銲。

AWS E4924〔E7024〕 鐵粉氧化鈦系

特性:

- ●被覆系統類似E7014,並添加極高比例鐵粉。被覆劑重量約佔整支銲條50%以上,可大幅提高熔填效率。
- 適合於平銲及水平角銲,銲道外觀平坦光滑,波紋細緻。電弧平順穩 定,滲透力較低,銲濺物少,可適用較高的銲接速度。

用途:

●多用於H型鋼或T型鋼之平角銲。

AWS E4928 [E7028] 鐵粉低氫系

特性:

- ●被覆系類似7018,但含有更高的鐵粉,被覆重量佔約整支銲條50%以上。為平銲及水平填角銲之專用銲條。熔填效率高,可適用較高的 銲接速度。
- 脱渣性佳, 銲道美觀。

用途:

● 多用於重型機械、鋼結構、造船、橋樑等銲件主要結構的重力式銲 接。

AWS E4948 [E7048] 鐵粉低氫系

特性:

- ●被覆系與作業性類似E7018,但立銲需使用下進銲法。鐵水與銲條間 可維持穩定的距離而不下淌。剝渣性佳,銲道美觀。
- 需注意儲放空間,避免吸濕,否則極易發生氣孔。

用涂:

●多用於重型機械、鋼結構、造船、橋樑等銲件主要結構的銲接。

AWS A5.4 / A5.4M*: 2006 不銹鋼遮護金屬電弧銲(電銲條)規格

Specification for Stainless Steel Electrodes for Shielded Metal Arc Welding

*A5.4 / A5.4M分別使用英制與公制標稱單位,請參見A5.1 / A5.1M説明

表一 全熔填銲接金屬化學成份記號(摘錄)

化學成份		化學成份 Wt % ^a									
記號	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	Ν	其它
E307-XX	0.04~0.14	1.00	3.30~4.75	0.04	0.03	9.0~10.7	18.0~21.5	0.5~1.5	0.75	-	_
E308-XX	0.08	1.00	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	0.75	_	_
E308L-XX	0.04	1.00	0.5~2.5	0.04	0.03	9.0~12.0	18.0~21.0	0.75	0.75	_	_
E308H-XX	0.04~0.08	1.00	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	0.75	_	_
E308MoXX	0.08	1.00	0.5~2.5	0.04	0.03	9.0~12.0	18.0~21.0	2.0~3.0	0.75	_	_
E308LMo-XX	0.04	1.00	0.5~2.5	0.04	0.03	9.0~12.0	18.0~21.0	2.0~3.0	0.75	_	_
E309-XX	0.15	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	0.75	_	_
E309H-XX	0.04~0.15	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	0.75	_	_
E309L-XX	0.04	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	0.75	_	_
E309Nb-XX	0.12	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	0.75	_	Nb0.70~1.00
E309Mo-XX	0.12	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	2.0~3.0	0.75	_	_
E309LMo-XX	0.04	1.00	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	2.0~3.0	0.75	_	-
E310-XX	0.08~0.20	0.75	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	0.75	_	_
E310H-XX	0.35~0.45	0.75	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	0.75	_	_
E310Nb-XX	0.12	0.75	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	0.75	_	Nb0.70~1.00
E310Mo-XX	0.12	0.75	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	2.0~3.0	0.75	_	_
E312-XX	0.15	1.00	0.5~2.5	0.04	0.03	8.0~10.5	28.0~32.0	0.75	0.75	_	_
E316-XX	0.08	1.00	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	0.75	_	_
E316L-XX	0.04	1.00	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	0.75	_	_
E316H-XX	0.04~0.08	1.00	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	0.75	_	-
E316LMn-XX	0.04	0.90	5.0~8.0	0.04	0.03	15.0~18.0	18.0~21.0	2.5~3.5	0.75	_	N 0.10~0.25
E317-XX	0.08	1.00	0.5~2.5	0.04	0.03	12.0~14.0	18.0~21.0	3.0~4.0	0.75	_	_
E317L-XX	0.04	1.00	0.5~2.5	0.04	0.03	12.0~14.0	18.0~21.0	3.0~4.0	0.75	_	_
E318-XX	0.08	1.00	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	0.75	_	Nb6× C~1.00

表一 全熔填銲接金屬化學成份記號(續)

化學成份						化學成分	份 Wt % ^a				
記號	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	N	其它
E320-XX	0.07	0.60	0.5~2.5	0.04	0.03	32.0~36.0	19.0~21.0	2.0~3.0	3.0~4.0	_	Nb8× C~1.00
E320LR-XX	0.03	0.30	1.50~ 2.50	0.020	0.015	32.0~36.0	19.0~21.0	2.0~3.0	3.0~4.0	_	Nb8× C~0.40
E330-XX	0.18~ 0.25	1.00	1.0~2.5	0.04	0.03	33.0~37.0	14.0~17.0	0.75	0.75	_	_
E330H-XX	0.35~ 0.45	1.00	1.0~2.5	0.04	0.03	33.0~37.0	14.0~17.0	0.75	0.75	_	_
E347-XX	0.08	1.00	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	0.75	_	Nb8× C~1.00
E349-XX	0.13	1.00	0.5~2.5	0.04	0.03	8.0~10.0	18.0~21.0	0.35~0.65	0.75	_	b
E383-XX	0.03	0.90	0.5~2.5	0.02	0.02	30.0~33.0	26.5~29.0	3.2~4.2	0.6~1.5	_	_
E385-XX	0.03	0.90	1.0~2.5	0.03	0.02	24.0~26.0	19.5~21.5	4.2~5.2	1.2~2.0	_	_
E409Nb-XX	0.12	1.00	1.0	0.04	0.03	0.6	11.0~14.0	0.75	0.75	_	Nb0.5~
E410-XX	0.12	0.90	1.0	0.04	0.03	0.7	11.0~13.5	0.75	0.75	_	_
E410NiMo-X	0.06	0.90	1.0	0.04	0.03	4.0~5.0	11.0~12.5	0.40~0.70	0.75	_	_
E430-XX	0.10	0.90	1.0	0.04	0.03	0.6	15.0~18.0	0.75	0.75	_	_
E430Nb-XX	0.10	1.00	1.0	0.04	0.03	0.6	15.0~18.0	0.75	0.75	_	Nb0.5~
E630-XX	0.05	0.75	0.25~ 0.75	0.04	0.03	4.5~5.0	16.00~ 16.75	0.75	3.25~ 4.00	_	Nb0.15~
E16-8-2-XX	0.10	0.60	0.5~2.5	0.03	0.03	7.5~9.5	14.5~16.5	1.0~2.0	0.75	_	_
E2209-XX	0.04	1.00	0.5~2.0	0.04	0.03	8.5~10.5	21.5~23.5	2.5~3.5	0.75	0.08~ 0.20	_
E2553-XX	0.06	1.00	0.5~1.5	0.04	0.03	6.5~8.5	24.0~27.0	2.9~3.9	1.5~2.5	0.10~ 0.25	_
E2593-XX	0.04	1.00	0.5~1.5	0.04	0.03	8.5~10.5	24.0~27.0	2.9~3.9	1.5~3.0	0.08~ 0.25	_
E2594-XX	0.04	1.00	0.5~2.0	0.04	0.03	8.0~10.5	24.0~27.0	3.5~4.5	0.75	0.20~ 0.30	_
E2595-XX	0.04	1.2	2.5	0.03	0.025	8.0~10.5	24.0~27.0	2.5~4.5	0.4~1.5	0.20~ 0.30	W:0.4~ 1.0
E3155-XX	0.10	1.00	1.0~2.5	0.04	0.03	19.0~21.0	20.0~22.5	2.5~3.5	0.75	_	С
E33-31-XX	0.03	0.9	2.5~4.0	0.02	0.01	30.0~32.0	31.0~35.0	1.0~2.0	0.4~0.8	0.3~0.5	_

備註:

- a. 單一值為最大值
- b. $V=0.10\sim0.30$; $Ti \le 0.15$; $W=1.25\sim1.75$
- c. Co=18.5~21.0; W=2.0~3.0

 $\forall \forall$

S銲材規格

AWS A5.4 · A5.4M

 \mathbb{W}

S銲材規格

表二 銲接金屬(全銲道)機械性質要求(續)

化學成份記號	抗拉強	度,以上	延伸率,以上	銲後熱處理
16学队7万66%	ksi	MPa	%	非极积处 理
E430-XX	65	450	20	а
E430Nb-XX	65	450	20	а
E630-XX	135	930	7	d
E16-8-2-XX	80	550	35	不需要
E2209-XX	100	690	20	不需要
E2553-XX	110	760	15	不需要
E2593-XX	110	760	15	不需要
E2594-XX	110	760	15	不需要
E2595-XX	110	760	15	不需要
E3155-XX	100	690	20	不需要
E33-31-XX	105	720	25	不需要

備註:

- a. 加熱維持温度在760~790℃持温2小時(-0,+15分),每小時以55℃以下的冷卻速度,爐冷至595℃後空冷至室温。
- b. 加熱維持温度在730~760℃ 持温1小時(-0,+15分),每小時以110℃以下的冷卻速度,爐冷至315℃ 後空冷至室温。
- c. 加熱維持温度在595~620℃持温1小時(-0,+15分),然後空冷至室温。
- d. 加熱維持温度在1025~1050℃持温1小時(-0,+15分),空冷至室温為止。然後再加熱610~630℃持温4小時(-0,+15分)後再空冷至室温。

表三 電流種類及銲接姿勢特性

AWS規格	電流極性*	銲接姿勢
EXXX (X) -15	DC (+)	全姿勢
EXXX (X) -16	AC及DC (+)	全姿勢
EXXX (X) -17	AC及DC (+)	全姿勢
EXXX (X) -26	AC及DC (+)	平銲及水平角銲

*電流極性説明:

AC: 交流; DC+: 直流(正電極); DC-: 直流(負電極); DC \pm : 直流(正電極或負電極)

A5.4M

不銹鋼電銲條規格與特性說明(AWS A5.4 / A5.4M)

E307

● 全熔填銲接金屬典型成份約含19.8%Cr、9.8%Ni、4%Mn及 1%Mo。適用於中等強度且抗裂性良好的異材銲件,類如奧斯田錳鋼 與碳鋼鍛件或鑄件的接合。

E308/E308H/E308L

- ●全熔填銲接金屬典型成份約含19.5%Cr、10%Ni。最廣為使用之不銹鋼銲材。常用以銲接相似成份之不銹鋼母材,類如AISI 301、302、304及305等。
- 308H規定銲接金屬之碳含量在0.04%~0.08%間,具有較佳之高温強度及抗潛變強度。適用於304H不銹鋼材之銲接。銲接金屬中肥粒鐵含量約為5FN,可以適度降低高温環境下之σ相脆化效應。
- 308L規定銲接金屬之碳含量必須在0.04%以下(不含Nb或Ti穩定性 合金元素),可有效降低碳化物於晶界析出,以提高耐晶界間腐蝕能 力,但高温強度則不如E308H或E347。

F309/F309I

- ●全熔填銲接金屬典型成份約含23.5%Cr、13%Ni,C含量≦0.15%, 銲接金屬中肥粒鐵含量約為3至20FN。適用於相似成份的鑄件或鍛件,也適用於異種金屬之銲接,類如304與碳鋼或低合金鋼之銲接, 以及304型護面鋼與碳鋼的界面銲道的銲接。
- ■異材金屬銲件不建議後熱處理且使用温度宜≦370℃,否則易發生脆化或龜裂現象。
- 銲接304型工件母材,可使銲接金屬獲得較高的合金成份,以有效提高極嚴苛的腐蝕環境。
- ●309L規定銲接金屬之碳含量必須在0.04%以下(不含穩定性合金元素如Nb),肥粒鐵含量通常高於8 FN。低碳成份可有效抑制碳化物於晶界析出,以增加抗晶界腐蝕性。但高温強度則不如添加Nb之309型及309H型。

E309Mo

全熔填銲接金屬之化學成份與309相似,但另外含有約2~3%Mo且碳含量較低,適用於316不銹鋼與碳鋼,或316護面鋼與碳鋼的界面銲道的銲接。

E310/E310H

- 全熔填銲接金屬典型成份約含26.5%Cr、21%Ni。適用於相似合金成份的不銹鋼材銲接。
- ●310H的全熔填銲接金屬成份與310相同,但C含量則介於

0.35~0.45%之間。適用於銲接或修補耐熱且耐腐蝕之高合金鑄件,合金鑄件研究院指定屬於HK型合金。銲接金屬可耐930 $^{\circ}$ 以上的高温強度,但不建議使用於高硫氣體或嚴重熱衝擊之環境。若長時間暴露於760 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 温域間,易生成 $^{\circ}$ 施化相及二次碳化物,而導致耐腐蝕性或/及延展性降低。

E312

- ●全熔填銲接金屬典型成份約含30%Cr、9%Ni。適用於相似合金成份的不銹鋼鑄件的銲接。當異種金屬銲接時,特別適用於有一方母材屬於高Ni不銹鋼之銲件。
- 銲接金屬之奧斯田鐵基地中被高量之肥粒鐵所取代而形成雙相之金相 組織,具極佳之抗龜裂性。
- ●銲件的使用温度不可高於420℃以避免二次脆化相之形成。

E316/E316H/E316L

- 全熔填銲接金屬典型成份約含18.5%Cr、12.5%Ni及2.5%Mo。適用於316型不銹鋼及相似合金工件的銲接。銲件主要用在高温環境,使用初期銲接金屬的碳含量規定約在0.06%左右,目前直接使用316H便可符合此要求。
- ●因銲接金屬中約含有2.5%Mo,可以使銲件在高温時保持足夠的抗潛 變強度及延展性。
- 316型不銹鋼銲件在以下三種條件同時出現時,會發生快速腐蝕的情形:
- 1.在銲接金屬金相中出現連續性或半連續性的網狀肥粒鐵組織。
- 2. 銲接金屬的Cr、Mo含量比值,低於8.2:1時。
- 3. 銲件直接受腐蝕環境衝擊。(類如高氧化環境)。
- ●316H的全熔填銲接金屬成份與316相同,但C含量則介於 0.04~0.08%之間。因為C含量的提高,能改善高温抗拉及抗潛變強 度。適用於316H及相似成份之工件母材。
- ●316L的全熔填銲接金屬成份與316相同,但C含量規定在0.04%以下。銲接金屬中的低含C量可降低碳化物於晶界析出,以提昇抗粒間腐蝕能力。適用於低C含Mo奧斯田鐵合金鋼材的銲接,但高温強度低於316H。 在傳統上銲接304型及316型不銹鋼工件,若銲接金屬的肥粒鐵量低於2FN,低温用途可達到-269℃之條件。

E317

● 全熔填銲接金屬成份含量稍高於316型,特別是Mo含量。適用於銲接 相似合金以及需抗隙蝕及點蝕等嚴重腐蝕環境(如含有鹵化物時)之 工件。

WS銲材規格

不銹鋼電銲條 E XXX-15 / 16 / 17符號說明

E318

 全熔填銲接金屬成份與316型相似,但額外添加有微量之Nb元素,可 降低碳化物於晶界析出而增加抗粒間腐蝕能力。適用於銲接相似成份 之工件母材。

E347

E410

- 銲接金屬典型成份約含有12%Cr,屬於大氣中硬化型鋼種。為符合工程上的應用條件,銲件需實施預熱及後熱處理以達到符合規定的延展性。
- 適用於銲接相似成份之工件母材,亦可用於碳鋼之護面銲接,使銲接 面能達到抗腐蝕、沖蝕或磨耗等用途。

E410NiMo

- 適用於銲接ASTM CA6NM及其它相似成份之工件母材類如410、 410S及405等。
- 銲接金屬成份是410型不銹鋼之改良型,藉由增加Ni含量及降低Cr含量,以降低銲接金屬中之肥粒鐵含量,銲件最後再透過後熱處理以達到所需的機械性能。後熱處理温度不宜超過620℃,若高過此温度,工件在冷卻至室温後,將導致非回火型麻田散鐵相的形成,造成再次硬化,使機械性能降低。

E430

- 全熔填銲接金屬典型成份約含有15%~18%Cr。此範圍內的Cr含量, 能提供適當的抗腐蝕能力,且銲件在熱處理後,仍能維持相當的延展 性。
- 為使銲件達到理想的耐腐蝕與機械性能,預熱及後熱處理不可省略。

E2209

- ●全熔填銲接金屬典型成份約含有22.5%Cr、9.5%Ni、3%Mo、0.15%N。適用於銲接含有22%Cr的雙相不銹鋼工件。
- 金相同時具有肥粒鐵及奧斯田鐵兩種組織,且擁有提高抗拉強度與改善善抗點蝕以及抗應力腐蝕龜裂的能力。

符號 -15

此銲條系列通常只能用DC+(DCEP)銲接,AC電流雖亦可使用,但不保障品質。線徑≦4.0mm可適用於全姿勢銲接。

符號 -16

此銲條系列通常於被覆含有易產生離子化之元素,如K、Na等,能在使用AC電流時有效穩定電弧。線徑≦4.0mm可適用於全姿勢銲接。

符號 -17

此銲條系列為-16型之改良版。被覆中含有適量的矽酸塩類以取代-16中的鈦酸塩類,使被覆更具有酸性特性。-16與-17在過去並未詳細區分, 直到AWS規範1992年版才出現分類。

符號 -16 / -17 兩者主要差異如下:

- 銲接平角銲時,-17被覆所產生的電弧較傾向噴灑移行,銲道表面紋路較為細緻,而且銲渣的冷卻速度較慢,銲接作業性較佳,銲道外觀平至微凹,而-16則呈現平至微凸(如下圖例)。
- ●立角銲時,由於-17銲渣冷卻速度較慢,需要以織動方式銲接方能得到較理想錯道外觀。線徑≧4.8mm不建議用在立銲或仰銲銲姿。

符號 -26

●此系列銲條專用於平銲或水平填角銲。被覆較厚且含有較高的合金成份,熔填效率較高,銲道外觀平至微凹,適用於高電流銲接。

圖例: EXXX -15 -16 -17

 \mathbb{W}

S

Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding

電銲條記號

- 銲接金屬(全銲道)最低抗拉強度記號;A5.5規格數值單位為 ksi; A5.5M規格數值來自MPa÷10。例: E8018-C1抗拉強度單 位為80,000psi; E5518-C1抗拉強度單位為550 MPa(見表一)

使用特性記號,如適用銲接姿勢、被覆系統及電流特性(見表二)。例:E8018-C1〔E5518-C1〕中"18"表示 鐵粉低氫系適用全姿勢銲接,使用AC或DC(+)電流

全熔填銲接金屬化學成份記號。例:E8018-C1 〔E5518-C1〕中 "C1"表示全熔填銲接金屬含有 2.00至2.75%鎳(見表三)

EXXXX - X

E XX XX E XX XX M1 E XX XX M HZ E XX XX M1 HZ E XX XX X HZ R

E (1) XX18M (1) (EXX18M (1)〕機械性質符合大多數軍規要求(具 有較佳衝擊韌性、降伏強度及延伸率) 例:E11018M [E7618M] (見表二)

分類記號(非強制性規定)

低氫系電銲條吸潮試驗要求。為選擇性 檢驗項目(表略)。例:E8018-C1R [E5518-C1R]

低氫系電銲條擴散氫試驗要求。每100g 銲接金屬的擴散氫含量平均值不可超過Z ml; Z為4,8或16。例: E8018-C1H8 〔E5518-C1 H8〕中表示銲接金屬中氫 含量不超過8 ml/100g。

*A5.5 / A5.5 M 分別使用英制與公製標稱單位,請參見A5.1 / A5.1 M 説明

表一 銲接金屬(全銲道)抗拉強度要求

AWS	AWS規格		抗拉強度		代強度	延伸率	後熱處理
A5.5	A5.5M	ksi	MPa	ksi	MPa	%	條件
E7010-P1	E4910-P1	70	490	60	415	22	AW
E7010-A1	E4910-A1	70	490	57	390	22	PWHT
E7010-G	E4910-G	70	490	57	390	22	AW或PWHT

AWS	3 規格	抗拉	強度	降化	犬強度	延伸率	後熱處理
A5.5	A5.5M	ksi	MPa	ksi	MPa	%	條件
E7011-A1	E4911-A1	70	490	57	390	22	PWHT
E7011-G	E4911-G	70	490	57	390	22	AW或PWHT
E7015-X	E4915-X	70	490	57	390	22	PWHT
E7015-B2L	E4915-B2L	75	520	57	390	19	PWHT
E7015-G	E4915-G	70	490	57	390	22	AW或PWHT
E7016-X	E4916-X	70	490	57	390	22	PWHT
E7016-B2L	E4916-B2L	75	520	57	390	19	PWHT
E7016-G	E4916-G	70	490	57	390	22	AW或 PWHT
E7018-X	E4918-X	70	490	57	390	22	PWHT
E7018-B2L	E4918-B2L	75	520	57	390	19	PWHT
E7018-C3L	E4918-C3L	70	490	57	390	22	AW
E7018-W1	E4918-W1	70	490	60	415	22	AW
E7018-G	E4918-G	70	490	57	390	22	AW或PWHT
E7020-A1	E4920-A1	70	490	57	390	22	PWHT
E7020-G	E4920-G	70	490	57	390	22	AW或PWHT
E7027-A1	E4927-A1	70	490	57	390	22	PWHT
E7027-G	E4927-G	70	490	57	390	22	AW或PWHT
E8010-P1	E5510-P1	80	550	67	460	19	AW
E8010-G	E5510-G	80	550	67	460	19	AW或PWHT
E8011-G	E5511-G	80	550	67	460	19	AW或PWHT
E8013-G	E5513-G	80	550	67	460	16	AW或PWHT
E8015-X	E5515-X	80	550	67	460	19	PWHT
E8015-B3L	E5515-B3L	80	550	67	460	17	PWHT
E8015-G	E5515-G	80	550	67	460	19	AW或PWHT
E8016-X	E5516-X	80	550	67	460	19	PWHT
E8016-C3	E5516-C3	80	550	68~80	470~550	24	AW
E8016-C4	E5516-C4	80	550	67	460	19	AW
E8016-G	E5516-G	80	550	67	460	19	AW或PWHT
E8018-X	E5518-X	80	550	67	460	19	PWHT
E8018-B3L	E5518-B3L	80	550	67	460	17	PWHT
E8018-C3	E5518-C3	80	550	68~80	470~550	24	AW
E8018-C4	E5518-C4	80	550	67	460	19	AW
E8018-NM1	E5518-NM1	80	550	67	460	19	AW
E8018-P2	E5518-P2	80	550	67	460	19	AW
E8018-W2	E5518-W2	80	550	67	460	19	AW
E8018-G	E5518-G	80	550	67	460	19	AW或PWHT

AWS銲材規格

表一 銲接金屬(全銲道)抗拉強度要求 (續)

AWS	規格	抗拉	強度	降位	強度	延伸率	後熱處理
A5.5	A5.5M	ksi	MPa	ksi	MPa	%	條件
E8045-P2	E5545-P2	80	550	67	460	19	AW
E9010-P1	E6210-P1	90	620	77	530	17	AW
E9010-G	E6210-G	90	620	77	530	17	AW或PWHT
E9011-G	E6211-G	90	620	77	530	17	AW或PWHT
E9013-G	E6213-G	90	620	77	530	14	AW或PWHT
E9015-X	E6215-X	90	620	77	530	17	PWHT
E9015-G	E6215-G	90	620	77	530	17	AW或PWHT
E9016-X	E6216-X	90	620	77	530	17	PWHT
E9016-G	E6216-G	90	620	77	530	17	AW或PWHT
E9018M	E6218M	90	620	78~90	540~620	24	AW
E9018-P2	E6218-P2	90	620	77	530	17	AW
E9018-X	E6218-X	90	620	77	530	17	PWHT
E9018-G	E6218-G	90	620	77	530	17	AW或PWHT
E9045-P2	E6245-P2	90	620	77	530	17	AW
E10010-G	E6910-G	100	690	87	600	16	AW或PWHT
E10011-G	E6911-G	100	690	87	600	16	AW或PWHT
E10013-G	E6913-G	100	690	87	600	13	AW或PWHT
E10015-X	E6915-X	100	690	87	600	16	PWHT
E10015-G	E6915-G	100	690	87	600	16	AW或PWHT
E10016-X	E6916-X	100	690	87	600	16	PWHT
E10016-G	E6916-G	100	690	87	600	16	AW或PWHT
E10018M	E6918M	100	690	88~100	610~690	20	AW
E10018-X	E6918-X	100	690	87	600	16	PWHT
E10018-G	E6918-G	100	690	87	600	16	AW或PWHT
E10045-P2	E6945-P2	100	690	87	600	16	AW
E11010-G	E7610-G	110	760	97	670	15	AW或PWHT
E11011-G	E7611-G	110	760	97	670	15	AW或PWHT
E11013-G	E7613-G	110	760	97	670	13	AW或PWHT
E11015-G	E7615-G	110	760	97	670	15	AW或PWHT
E11016-G	E7616-G	110	760	97	670	15	AW或PWHT
E11018-G	E7618-G	110	760	97	670	15	AW或PWHT
E11018M	E7618M	110	760	98~110	680~760	20	AW
E12010-G	E8310-G	120	830	107	740	14	AW或PWHT
E12011-G	E8311-G	120	830	107	740	14	AW或PWHT

AWS	規格	抗拉強度		降仂	強度	延伸率	後熱處理
A5.5	A5.5M	ksi	MPa	ksi	MPa	%	條件
E12013-G	E8313-G	120	830	107	740	11	AW或PWHT
E12015-G	E8315-G	120	830	107	740	14	AW或PWHT
E12016-G	E8316-G	120	830	107	740	14	AW或PWHT
E12018-G	E8318-G	120	830	107	740	14	AW或PWHT
E12018M	E8318M	120	830	108~120	745~830	18	AW
E12018M1	E8318M1	120	830	108~120	745~830	18	AW

表二 被覆種類、銲接姿勢及電流特性

AWS規	_{見格} (1)	か要でな	銲接姿勢 ⁽²⁾	電流極性 (3)
A5.5	A5.5M	被覆系統	軒 按 安 势 (⁻/	電流刨生(*)
E7010-X	E4910-X	高纖維素鈉系	F.V.OH.HF	DC(+)
E7011-X	E4911-X	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E7015-X	E4915-X	低氫鈉系	F.V.OH.HF	DC(+)
E7016-X	E4916-X	低氫鉀系	F.V.OH.HF	AC或DC(+)
E7018-X	E4918-X	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E7020-X	E4920-X	高氧化鐵	F&HF	AC,DC(+)或DC(-)
E7027-X	E4927-X	高鐵粉氧化鐵	F&HF	AC,DC(+)或DC(-)
E8010-X	E5510-X	高纖維素鈉系	F.V.OH.HF	DC(+)
E8011-G	E5511-G	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E8013-G	E5513-G	高氧化鈦鉀系	F.V.OH.HF	AC,DC(+)或DC(-)
E8015-X	E5515-X	低氫鈉系	F.V.OH.HF	DC(+)
E8016-X	E5516-X	低氫鉀系	F.V.OH.HF	AC或DC(+)
E8018-X	E5518-X	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E8045-P2	E5545-P2	低氫鈉系	F.OH.H.V-down	DC(+)
E9010-G	E6210-G	高纖維素鈉系	F.V.OH.HF	DC(+)
E9010-X	E6210-X	高纖維素鈉系	F.V.OH.HF	DC(+)
E9011-G	E6211-G	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E9013-G	E6213-G	高氧化鈦鉀系	F.V.OH.HF	AC,DC(+)或DC(-)
E9015-X	E6215-X	低氫鈉系	F.V.OH.HF	DC(+)
E9016-X	E6216-X	低氫鉀系	F.V.OH.HF	AC或DC(+)
E9018-X	E6218-X	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E9018M	E6218M	鐵粉低氫系	F.V.OH.HF	DC(+)

W

S

其它

Mo

0.40~0.65

0.40~0.65

E7015	E4915		≦0.60	≦0.90	≦0.03	≦0.03		_	0.40~6.65	_		
-A1	-A1											
E7016 —A1	E4916 —A1	≦0.12	≦0.60	≦0.90	≦0.03	≦0.03	_	_	0.40~0.65	_		
E7018	E4918											
-A1	-A1		≦0.80	≦0.90	≦0.03	≦0.03		_	0.40~0.65	_		
E7020	E4920		=0.40	< 0.00	< 0.00	<0.00			0.40.005			
-A1	-A1		≦0.40	≦0.60	≦0.03	≦0.03			0.40~0.65			
E7027	E4927		≤n 4n	≤1 ∩∩	≦0.03	≤n n3		_	0.40~0.65	_		
-A1	-A1		=0.40	= 1.00	=0.03	=0.03			0.40 0.00			
					鉻鉬鋼							
E8016	E5516		≦0.60	≤0.90	≦0.03	≤0.03	_	0.40~	0.40~0.65	_		
−B1	−B1	0.05~	_0.00	_0.00	_0.00	_0.00		0.65	0.40 0.00			
E8018	E5518	0.12	≦0.80	≦0.90	≦0.03	≦0.03	_	0.40~	0.40~0.65	_		
-B1	-B1							0.65				
E8016 -B2	E5516 -B2	0.05~	≦0.60	≦0.90	≦0.03	≦0.03	_	1.00~ 1.50	0.40~0.65	_		
E8018	E5518			0.12						1.00~		
-B2	-B2	0.12	≦0.80	≦0.90	≦0.03	≦0.03	_	1.50	0.40~0.65	_		
E7015	E4915		= 1.00	=0.00	=0.00	=0.00		1.00~	0.40.005			
-B2L	-B2L		≦1.00	≥0.90	≦0.03	≥0.03	_	1.50	0.40~0.65	_		
E7016	E4916	≦ 0.05	≤n 60	≤n on	≦0.03	≤n n3		1.00~	0.40~0.65			
-B2L	-B2L	=0.03	=0.00	=0.90	=0.03	=0.03		1.50	0.40 -0.00			
E7018	E4918		≦0.80	≦0.90	≦0.03	≦0.03	_	1.00~	0.40~0.65	_		
-B2L	-B2L							1.50				
E9015	E6215		≦1.00	≦0.90	≦0.03	≦0.03	_	2.00~	0.90~1.20	_		
-В3 Е9016	-В3 Е6216	0.05~						2.50				
-B3	-B3	0.05~	0.05~	≦0.60	≦0.90	≦0.03	≦0.03	_	2.50	0.90~1.20	_	
E9018	E6218	0.12						2.00~				
-B3	-B3		≦0.80	≦0.90	≦0.03	≦0.03	_	2.50	0.90~1.20	_		

 $\leq 1.00 \mid \leq 0.90 \mid \leq 0.03 \mid \leq 0.03$

 $\leq 0.80 \mid \leq 0.90 \mid \leq 0.03 \mid \leq 0.03$

 $\leq 0.05 \mid \leq 1.00 \mid \leq 0.90 \mid \leq 0.03 \mid \leq 0.03$

2.00~

2.50

2.00~

2.50

1.75~

2.25

0.90~1.20

0.90~1.20

0.40~0.65

表三 全熔填銲接金屬化學成份要求(摍錄)

碳鉬鋼

 $\leq 0.40 \mid \leq 0.60 \mid \leq 0.03 \mid \leq 0.03$

 $\leq 0.40 \mid \leq 0.60 \mid \leq 0.03 \mid \leq 0.03$

Si

Mn

化學成份 Wt %

銲條規格

A5.5 A5.5M

E7010 E4910

-A1 -A1

E7011 E4911

E8015 E5515

-B3L -B3L

E8018 E5518

-B3L -B3L E8015 E5515

-B4L -B4L

≦0.05

-A1 E7015 E4915

-A1

AWS規	14 (1)	被覆系統	銲接姿勢 ⁽²⁾	電流極性 (3)
A5.5	A5.5M	放復	軒′	電流極性()
E9045-P2	E6245-P2	低氫鈉系	F.OH.H.V-down	DC(+)
E10010-G	E6910-G	高纖維素鈉系	F.V.OH.HF	DC(+)
E10011-G	E6911-G	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E10013-G	E6913-G	高氧化鈦鉀系	F.V.OH.HF	AC,DC(+)或DC(-)
E10015-X	E6915-X	低氫鈉系	F.V.OH.HF	DC(+)
E10016-X	E6916-X	低氫鉀系	F.V.OH.HF	AC或DC(+)
E10018-X	E6918-X	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E10018M	E6918M	鐵粉低氫系	F.V.OH.HF	DC(+)
E10045-P2	E6945-P2	低氫鈉系	F.OH.H.V-down	DC(+)
E11010-G	E7610-G	高纖維素鈉系	F.V.OH.HF	DC(+)
E11011-G	E7611-G	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E11013-G	E7613-G	高氧化鈦鉀系	F.V.OH.HF	AC,DC(+)或DC(-)
E11015-G	E7615-G	低氫鈉系	F.V.OH.HF	DC(+)
E11016-G	E7616-G	低氫鉀系	F.V.OH.HF	AC或DC(+)
E11018-G	E7618-G	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E11018M	E7618M	鐵粉低氫系	F.V.OH.HF	DC(+)
E12010-G	E8310-G	高纖維素鈉系	F.V.OH.HF	DC(+)
E12011-G	E8311-G	高纖維素鉀系	F.V.OH.HF	AC或DC(+)
E12013-G	E8313-G	高氧化鈦鉀系	F.V.OH.HF	AC,DC(+)或DC(-)
E12015-G	E8315-G	低氫鈉系	F.V.OH.HF	DC(+)
E12016-G	E8316-G	低氫鈉系	F.V.OH.HF	AC或DC(+)
E12018-G	E8318-G	鐵粉低氫鉀系	F.V.OH.HF	AC或DC(+)
E12018M	E8318M	鐵粉低氫系	F.V.OH.HF	DC(+)
E12018M1	E8318M1	鐵粉低氫系	F.V.OH.HF	DC(+)

備註1:規格表中字母 "X" 可表示任何一種合金記號。

備註2: 銲接姿勢説明

F:平銲;V:立銲;O:仰銲;H:橫銲或平角銲; V-down:立銲下進

備註3:電流極性説明

AC:交流; DC+:直流(正電極); DC-:直流(負電極); DC±:直流(正

電極或負電極)

AWS銲材規格

表三 全熔填銲接金屬化學成份要求(摘錄)(續)

銲條	規格	化學成份 Wt %								
A5.5	A5.5M	С	Si	Mn	Р	S	Ni	Cr	Мо	其它
E8016 -B5	E5516 -B5	0.07~ 0.15	0.30~ 0.60	0.40~ 0.70	≦0.03	≦0.03	_	0.40~ 0.60	1.00~1.25	V≦ 0.05
E8015 -B6	E5515 -B6		≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8016 -B6	E5516 -B6	0.05~ 0.10	≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8018 -B6	E5518 -B6		≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8015 -B6L	E5515 -B6L		≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8016 -B6L	E5516 -B6L	≦0.05	≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8018 -B6L	E5518 -B6L		≦0.90	≦1.0	≦0.03	≦0.03	≦ 0.04	4.0~6.0	0.45~0.65	_
E8015 -B7	E5515 -B7		≦0.90	≦1.0	≦0.03	≦0.03	_	6.0~8.0	0.45~0.65	_
E8016 -B7	E5516 -B7	0.05~ 0.10	≦0.90	≦1.0	≦0.03	≦0.03	_	6.0~8.0	0.45~0.65	_
E8018 -B7	E5518 -B7		≦0.90	≦1.0	≦0.03	≦0.03	_	6.0~8.0	0.45~0.65	_
E8015 -B7L	E5515 -B7L		≦0.90	≦1.0	≦0.03	≦0.03	_	6.0~8.0	0.45~0.65	_
E8016 -B7L	E5516 -B7L	≦0.05	≦0.90	≦1.0	≦0.03	≦0.03	_	6.0~8.0	0.45~0.65	_
E8018 -B7L	E5518 -B7L		≦0.90	≦1.0	≦0.03	≦0.03	_		0.45~0.65	_
E8015 -B8	E5515 -B8		≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	_
E8016 -B8	E5516 -B8	0.05~ 0.10	≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	_
E8018 -B8	E5518 -B8		≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	
E8015 -B8L	E5515 -B8L		≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	_
E8016 -B8L	E5516 -B8L	≦0.05	≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	_
E8018 -B8L	E5518 -B8L		≦0.90	≦1.0	≦0.03	≦0.03	_	8.0~ 10.5	0.85~1.20	_
E9015 -B9	E6215 -B9	0.08~ 0.13	≦0.90	≦ 1.20	≦0.01	≦0.01	≦ 0.80	8.0~ 10.5	0.85~1.20	а

銲條	規格				化學成何	分 Wt %			
A5.5	A5.5M	Si	Mn	Р	S	Ni	Cr	Mo	其它
E9016 -B9	E6216 -B9	≦0.30	≦ 1.20	≦0.01	≦0.01	≦0.80	8.0~ 10.5	0.85~1.20	а
E9018 -B9	E6218 -B9	≦0.30	≦ 1.20	≦0.01	≦0.01	≦0.80	8.0~ 10.5	0.85~1.20	а
				鎳	罁				
E8016 -C1	E5516 -C1	≦0.60	≦1.25	≦0.03	≦0.03	2.00~ 2.75	_	_	_
E8018 -C1	E5518 -C1	≦0.80	≦1.25	≦0.03	≦0.03	2.00~ 2.75	_	_	_
E7015 -C1L	E4915 -C1L	≦0.50	≦ 1.25	≦0.03	≦0.03	2.00~ 2.75	_	_	_
E7016 -C1L	E4916 -C1L	≦0.50	≦ 1.25	≦0.03	≦0.03	2.00~ 2.75	_	_	_
E7018 -C1L	E4918 -C1L	≦0.50	≦1.25	≦0.03	≦0.03	2.00~ 2.75	_	_	_
E8016 -C2	E5516 -C2	≦0.60	≦1.25	≦0.03	≦0.03	3.00~ 3.75	_	_	_
E8018 -C2	E5518 -C2	≦0.80	≦1.25	≦0.03	≦0.03	3.00~ 3.75	_	_	_
E7015 -C2L	E4915 -C2L	≦0.50	≦1.25	≦0.03	≦0.03	3.00~ 3.75	_	_	_
E7016 -C2L	E4916 -C2L	≦0.50	≦1.25	≦0.03	≦0.03	3.00~ 3.75	_	_	_
E7018 -C2L	E4918 -C2L	≦0.50		≦0.03	≦0.03	3.00~ 3.75	_	_	_
E8016 -C3	E5516 -C3	≦0.80	0.40~ 1.25	≦0.03	≦0.03	0.80~	≦0.15	≦0.35	V≦0.05
E8018 -C3	E5518 -C3	≦0.80	0.40~ 1.25	≦0.03	≦0.03	0.80~	≦0.15	≦0.35	V≦0.05
E7018 -C3L	E4918 -C3L	≦0.50	0.40~ 1.40	≦0.03	≦0.03	0.80~	≦0.15	≦0.35	V≦0.05
E8016 -C4	E5516 -C4	≦0.60	≦1.25	≦0.03	≦0.03	1.10~	_	_	_
E8018 -C4	E5518 -C4	≦0.80		≦0.03	≦0.03	1.10~ 2.00	_	_	_
E9015 -C5L	E6215 -C5L	≦0.50	0.40~ 1.00	≦0.03	≦0.03	6.00~ 7.25	_	_	_
				一般低	合金鋼				
E(X)XX 10-G ^(b)	EXX10 -G (b)	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20*	V≧0.10* Cu≧ 0.20*

銲條:	規格					化學成份 Wt %					
A5.5	A5.5M	С	Si	Mn	Р	S	Ni	Cr	Mo	其他	
E(X)XX 11-G ^(b)	EXX11 -G (b)	_	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20**	V≧0.10* Cu0.20*	
E(X)XX 13-G ^(b)	EXX13 -G (b)	_	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20*	V≧0.10* Cu0.20*	
E(X)XX 15-G ^(b)	EXX15 -G (b)	_	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20*	V≧0.10* Cu0.20*	
E(X)XX 16-G ^(b)	EXX16 -G (b)	_	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20*	V≧0.10* Cu0.20*	
E(X)XX 18-G ^(b)	EXX18 -G (b)	_	≧ 0.80*	≧ 1.00*	≦0.03	≦0.03	≧ 0.50*	≧0.30*	≧0.20*	V≧0.10* Cu 0.20*	
					類軍事	用鋼					
E9018 -M	E6218 -M		≦ 0.80	0.60~ 1.25	≦ 0.030	≦ 0.030	1.40~ 1.80	≦0.15	≦0.35	V≦0.05	
E10018 -M	E6918 -M		≦ 0.60	0.75~ 1.70	≦ 0.030	≦ 0.030	1.40~ 2.10	≦0.35	0.25~ 0.50	V≦0.05	
E11018 -M	E7618 -M	≦ 0.10	≦ 0.60	1.30~ 1.80	≦ 0.030	≦ 0.030	1.25~ 2.50	≦0.40	0.25~ 0.50	V≦0.05	
E12018 -M	E8318 -M		≦ 0.60	1.30~ 2.25	≦ 0.030	≦ 0.030	1.75~ 2.50	0.30~ 1.50	0.30~ 0.55	V≦0.05	
E12018 -M1	E8318 -M1		≦ 0.65	0.80~ 1.60	≦ 0.015	≦ 0.012	3.00~ 3.80	≦0.65	0.20~ 0.30	V≦0.05	
					耐傾	岸 鋼					
E7018 -W1	E4918 -W1	≦	0.40~ 0.70	0.40~ 0.70	≦ 0.025	≦ 0.025	0.20~ 0.40	0.15~ 0.30	_	V≦0.08 Cu 0.30~ 0.60	
E8018 -W2	E5518 -W2	0.12	0.35~ 0.80	0.50~ 1.30	≦0.03	≦0.03	0.40~ 0.80	0.45~ 0.70	_	Cu 0.30~ 0.75	

備註a:V:0.15~0.30;Cu≦0.25;Al≦0.04;Nb(Cb):0.02~0.10;N:0.02~0.07 備註b:群組 "G"中有"*"記號的各別元素,最少有一項符合,其他由買賣雙方協 議。

表四 銲接金屬衝擊試驗要求(摘錄)

AWS	3規格	五個衝擊試片之	其中三個平均值
A5.5	A5.5M	最低平均值	最低單一值
E7018-W1	E4918-W1	2071 (00%)	>00 L (00°0)
E8018-W2	E5518-W2	≥27J (-20°C)	≧20J (-20°C)
E12018M1	E8318M1	≧67J (-20°C)	≧54J (-20°C)
E7010-P1	E4910-P1	>071 (20%)	>001 (20%)
E8010-P1	E5510-P1	≥27J (-30°C)	≧20J (-30°C)
E8018-P2	E5518-P2		
E8045-P2	E5545-P2		
E9010-P1	E6210-P1	2071 (00%)	>00 L (00°0)
E9018-P2	E6218-P2	≥27J (-30°C)	≧20J (-30°C)
E9045-P2	E6245-P2		
E10045-P2	E6945-P2		
E8018-NM1	E5518-NM1		
E8016-C3	E5516-C3	≧27J (-40°C)	≧20J (-40°C)
E8018-C3	E5518-C3		
E7018-C3L	E4918-C3L		
E8016-C4,	E5516C4,		
E8018-C4	E5518-C4	≧27J (-50°C)	≧20J (-50°C)
E9018M,E10018M	E6218M,E6918M		
E11018M,E12018M	E7618M,E8318M		
E8016-C1	E5516-C1	>271 (60%)	>201 (60%)
E8018-C1	E5518-C1	≥27J (-60°C)	≧20J (-60°C)
E7015-C1L	E4915-C1L		
E7016-C1L	E4916-C1L		
E7018-C1L	E4918-C1L	≧27J (-75℃)	≧20J (-75℃)
E8016-C2	E5516-C2		
E8018-C2	E5518-C2		
7015-C2L	E4915-C2L		
E7016-C2L	E4916-C2L	≧27J (-100°C)	≧20J (-100°C)
E7018-C2L	E4918-C2L		
E9015-C5L	E6215-C5L	≧27J (-115°C)	≧20J (-115°C)
EXXXX-A1	EXXXX-A1		
EXXXX-BX	EXXXX-BX		規定
EXXXX-BXL	EXXXX-BXL	木 力	光/上
E(X)XXXX-G	EXXXX-G		

W

S銲材規格

低合金鋼電銲條規格與特性說明(AWS A5.5 / A5.5M)

E70XX-A1

- 銲接金屬中約含有0.5%Mo元素,能增加銲接金屬的強度,尤其是高温強度,並能提供相當程度的耐腐蝕性,但衝擊韌性可能略為下降。
- ●主要適用於碳鉬鋼(C-Mo)母材如ASTM A204及A335 P1管路銲接。

EXXXX-BX (L)

- ●銲接金屬中約含有0.5~9% Cr及0.5~1% Mo元素,特別針對高温環境下使用。
- ●低碳型EXXXX-BXL規定C元素≦0.05%以下,以改善銲接金屬的延展性並降低硬度,但高温強度及抗潛變能力可能相對降低。
- 鉻鉬鋼的銲接金屬在空冷下均有硬化現象,必需施以預熱及後熱處理。
- Cr-Mo鋼因使用於高温環境,衝擊韌性多不要求。

EXXXX-C1 (L) \ C2 (L) \ C3 (L)

- 銲接金屬中約含有1~3.5% Ni元素,可符合不同温度等級(-60℃、-75℃、-40℃)的低温衝擊韌性。
- C含量≤0.12%, 銲接金屬強度能符合E80XX規格。但若銲接ASTM A203 Gr.E、ASTM A352 LC3及LC4等極低碳含量之鎳鋼母材時, 需選用"低碳"等級之銲條,以符合低温韌性。
- 銲件多不需後熱處理,若規範有所要求,熱處理温度以605±15℃為限,若高於此温度,銲接金屬會有脆化之虞。

EXXXX-M (特殊用途鋼)

- ●主要用於軍事用途如銲接HY80及HY100等鋼種。為了達到理想的銲接金屬機械性能及射線檢測特性,銲材被覆中多添加少量合金元素(尤其是Ni元素)。
- 銲條在生產、包裝及運送過程需嚴格控管以避免被覆吸濕。
- 銲件多不需後熱處理。但常被要求≦260℃的銲後除氫處理。
- 在銲後原態下,銲接金屬的抗拉強度可達620~830N/mm²,且低温衝擊韌性可符合-20~-50℃的規定。

EXXXX-WX (耐候鋼)

- 銲接金屬能耐大氣腐蝕,主要用於ASTM A242及A588耐候鋼構件之 銲接。
- 銲接金屬中約含有0.5%Cu元素,以符合耐候要求;以及添加少許Cr及Ni元素以達到強度、延性及低温韌性的要求。

E80XX-G(一般通用低合金鋼)

●用於550N/mm²以上高張力鋼之銲接,其特性、化學成份及使用條件,由買賣雙方議定。

AWS A5.9 / A5.9M*: 2006 不銹鋼線材或棒材規格

Specification for Bare Stainless Steel Welding Electrodes and Rods

填料金屬記號**

一 線材或棒材金屬化學成份(見表一)

ER XXX

註釋:

* A5.9 / A5.9M分別使用英制與公制標稱單位,請參見A5.1 / A5.1M之説明

* * "E" 及 "ER" 之區別,請參見A5.1 / A5.1M之説明

表一 線材、棒材化學成份記號(摘錄)

銲線規格					1	化學成份 W	t %*				
亚干 形水	С	Si	Mn	Р	S	Ni	Cr	Mo	N	Cu	其它
ER209	0.05	0.90	4.0~7.0	0.03	0.03	9.5~12.0	20.5~24.0	1.5~3.0	0.10~0.30	0.75	V0.10 ⁴
ER218	0.10	3.5~4.5	4.0~9.0	0.03	0.03	8.0~9.0	16.0~18.0	0.75	0.08~0.18	0.75	_
ER219	0.05	1.00	8.0~10.0	0.03	0.03	5.5~7.0	19.0~21.5	0.75	0.10~0.30	0.75	_
ER240	0.05	1.00	10.5~13.5	0.03	0.03	4.0~6.0	17.0~19.0	0.75	0.10~0.30	0.75	_
ER307	0.04~0.14	0.30~0.65	3.30~4.75	0.03	0.03	8.0~10.7	19.5~22.0	0.5~1.5	_	0.75	_
ER308	0.08	0.30~0.65	1.0~2.5	0.03	0.03	9.0~11.0	19.5~22.0	0.75	_	0.75	_
ER308Si	0.08	0.65~1.00	1.0~2.5	0.03	0.03	9.0~11.0	19.5~22.0	0.75	_	0.75	_
ER308H	0.04~0.08	0.30~0.65	1.0~2.5	0.03	0.03	9.0~11.0	19.5~22.0	0.50	_	0.75	_
ER308L	0.03	0.30~0.65	1.0~2.5	0.03	0.03	9.0~11.0	19.5~22.0	0.75	_	0.75	_
ER308LSi	0.03	0.65~1.00	1.0~2.5	0.03	0.03	9.0~11.0	19.5~22.0	0.75	_	0.75	_
ER308Mo	0.08	0.30~0.65	1.0~2.5	0.03	0.03	9.0~12.0	18.0~21.0	2.0~3.0	_	0.75	_
ER308LMo	0.04	0.30~0.65	1.0~2.5	0.03	0.03	9.0~12.0	18.0~21.0	2.0~3.0	_	0.75	_
ER309	0.12	0.30~0.65	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	0.75	_	0.75	_
ER309Si	0.12	0.65~1.00	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	0.75	_	0.75	_
ER309L	0.03	0.30~0.65	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	0.75	_	0.75	_
ER309LSi	0.03	0.65~1.00	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	0.75	_	0.75	_
ER309Mo	0.12	0.30~0.65	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	2.0~3.0	_	0.75	_
ER309LMo	0.03	0.30~0.65	1.0~2.5	0.03	0.03	12.0~14.0	23.0~25.0	2.0~3.0	_	0.75	_
ER310	0.08~0.15	0.30~0.65	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	_	0.75	_
ER312	0.15	0.30~0.65	1.0~2.5	0.03	0.03	8.0~10.5	28.0~32.0	0.75	_	0.75	_
ER316	0.08	0.30~0.65	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	_
ER316Si	0.08	0.65~1.00	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	_
ER316H	0.04~0.08	0.30~0.65	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	_
ER316L	0.03	0.30~0.65	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	_
ER316LSi	0.03	0.65~1.00	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	_
ER316LMn	0.03	0.30~0.65	5.0~9.0	0.03	0.03	15.0~18.0	19.0~22.0	2.5~3.5	0.10~0.20	0.75	_
ER317	0.08	0.30~0.65	1.0~2.5	0.03	0.03	13.0~15.0	18.5~20.5	3.0~4.0	_	0.75	_
ER317L	0.03	0.30~0.65	1.0~2.5	0.03	0.03	13.0~15.0	18.5~20.5	3.0~4.0	_	0.75	

WS銲材規格

250

表一 線材、棒材化學成份記號(續)

		衣 —	旅付	` ′′	产 个人	化学风	分記號	(領)			
銲線規格						化學成份 \	Wt %*				
亚干 形水 入兄 作合	С	Si	Mn	Р	S	Ni	Cr	Mo	N	Cu	其它
ER318	0.08	0.30~0.65	1.0~2.5	0.03	0.03	11.0~14.0	18.0~20.0	2.0~3.0	_	0.75	Nb8×C~1.0
ER320	0.07	0.60	2.5	0.03	0.03	32.0~36.0	19.0~21.0	2.0~3.0	_	3.0~ 4.0	Nb8×C~1.0
ER320LR	0.025	0.15	1.5~2.0	0.015	0.02	32.0~36.0	19.0~21.0	2.0~3.0	_	3.0~ 4.0	Nb8×C~0.4
ER321	0.08	0.30~0.65	1.0~2.5	0.03	0.03	9.0~10.5	18.5~20.5	0.75	_	0.75	Ti9×C~1.0
ER330	0.18~0.25	0.30~0.65	1.0~2.5	0.03	0.03	34.0~37.0	15.0~17.0	0.75	_	0.75	_
ER347	0.08	0.30~0.65	1.0~2.5	0.03	0.03	9.0~11.0	19.0~21.5	0.75	_	0.75	Nb10×C~1.0
ER347Si	0.08	0.65~1.00	1.0~2.5	0.03	0.03	9.0~11.0	19.0~21.5	0.75	_	0.75	Nb10×C~1.0
ER383	0.025	0.50	1.0~2.5	0.02	0.03	30.0~33.0	26.5~28.5	3.2~4.2	_	0.0	1.50
ER385	0.025	0.50	1.0~2.5	0.02	0.03	24.0~26.0	19.0~21.5	4.2~5.2	_	1.2	2.0
ER409	0.08	0.8	0.8	0.03	0.03	0.6	10.5~13.5	0.50	_	0.75	Ti10×C~1.5
ER409Nb	0.08	1.0	0.8	0.04	0.03	0.6	10.5~13.5	0.50	_	0.75	Nb10C~0.75
ER410	0.12	0.5	0.6	0.03	0.03	0.6	11.5~13.5	0.75	_	0.75	_
ER410NiMo	0.06	0.5	0.6	0.03	0.03	4.0~5.0	11.0~12.5	0.4~0.7	_	0.75	_
ER420	0.25~0.40	0.5	0.6	0.03	0.03	0.6	12.0~14.0	0.75	_	0.75	_
ER430	0.10	0.5	0.6	0.03	0.03	0.6	15.5~17.0	0.75	_	0.75	_
ER439	0.04	0.8	0.8	0.03	0.03	0.6	17.0~19.0	0.5	_	0.75	Ti10×C~1.1
ER446LMo	0.015	0.4	0.4	0.02	0.02	Ni+Cu ≦0.5	25.0~27.5	0.75~ 1.50	0.015	Ni+ Cu ≦0.5	_
ER630	0.05	0.75	0.25~0.75	0.03	0.03	4.5~5.0	16.00~ 16.75	0.75	_	3.25~ 4.00	Nb:0.15~0.30
ER19- 10H	0.04~0.08	0.30~0.65	1.0~2.0	0.03	0.03	9.0~11.0	18.5~20.0	0.25	_	0.75	Nb≦0.05; Ti≦0.05
ER16-8-2	0.10	0.30~0.65	1.0~2.0	0.03	0.03	7.5~9.5	14.5~16.5	1.0~2.0	_	0.75	_
ER2209	0.03	0.90	0.50~2.00	0.03	0.03	7.5~9.5	21.5~23.5	2.5~3.5	0.08~ 0.20	0.75	_
ER2553	0.04	1.0	1.5	0.04	0.03	4.5~6.5	24.0~27.0	2.9~3.9	0.10~ 0.25	1.5~ 2.5	_
ER2594	0.03	1.0	2.5	0.03	0.02	8.0~10.5	24.0~27.0	2.5~4.5	0.20~ 0.30	1.5	W:≦1.0
ER33-31	0.015	0.50	2.00	0.02	0.01	30.0~33.0	31.0~35.0	0.5~2.0	0.35~	0.3~ 1.2	_
ER3556	0.05~0.15	0.20~0.80	0.50~2.00	0.04	0.015	19.0~22.5	21.0~23.0	2.5~4.0	0.10~	_	Co:16.0 ~21.0 W : 2.0~3.5 Nb≦0.30 Ta:0.30 ~1.25 Ai:0.10 ~0.50 Zr:0.001 ~0.100 La:0.005~0.100 B≦0.02

規格 電銲條) AWS A5.11 / A5.11M: 2005 鎳及鎳合金遮護金屬電弧銉

電銲條記號

Specification for Nickel and Nickel-Alloy Welding Electrodes for Shielded Metal Arc Welding

: E NiCrFe-3 <u>A</u> (見表-(全銲道)機械性質特性記號 全熔填銲接金屬化學成份及銲接金屬

X-XXX

	京部	至 學 %	≥20	1	≥30	≥30	≥30	≥30	≥20	≥30
	機械	抗拉強 度MPa	≥410	≥760	≥480	≥550	≥550	≥550	≥650	≥550
		其他米米	≤0.50	≤0.50	≥0.50	€0.50	≦0.50	€0.50	≦0.50	€0.50
		≥	I	ı	ı	I	-	ı		I
推 要 求		A	1.0	ı	≦0.75	I	I	ı	ı	≥0.5
医特伦		S		1	I	I	(q)	(q)		(q)
機械性質特性		Cu	≦0.25	≦0.25	巡	≦0.50	≦0.50	≦0.50	€0.50	≦0.50
一		F	1.0~4.0	I	0.1 ≥	I		€1.0		≥0.5
(全録道)		Nb+Ta	ı	1.0~2.5	ı	1.5~ 4.0(c)	0.5~ 3.0(c)	1.0~ 2.5(c)	1.0~3.5	1.0~2.5
睴	%	Ъ	≦0.75	1.0	≦2.5	≥11.0	≦12.0	≦10.0	≦12.0	7.0~
按金	化學成份 Wt%	>	I	I	ı	I	I	ı		I
分及鋅	化學成	Мо	ı	ı	I	I	0.5~2.5	ı	1.0~3.5	≥0.5
全熔填銲接金屬化學成份及銲接金		Cr	ı	48.0~52.0	ı	≧62.0 13.0~17.0	≥62.0 13.0~17.0 0.5~2.5	≥59.0 13.0~17.0	≥60.0 13.0~17.0	28.0~31.5
金屬		Ni (a)	≥92.0	凝電	62.0~	≥62.0	≥62.0	≥59.0	≥60.0	一級
真維持		S	≦0.02	≦0.02	≥ 0.015	≥ 0.015	≦0.02	≥ 0.015	≦0.02	≥ 0.015
松松		۵	≤0.03	≦0.02	≤ 0.02	€0.03	€0.03	€0.03	≦0.03	€0.03
张		Mn	≦0.75	≥1.5	≥4.0	≥3.5	1.0~3.5	5.0~9.5 ≤ 0.03	$\leq 1.0 \ 1.0 \sim 3.5 \leq 0.03$	≥ 5.0
		Si	≤1.25	1.0	₹.15	≦0.75	€0.75	≥ 1.0	≥1.0	≦0.75
		O	≦0.10	≦0.10	≦0.15	≥0.08	≦0.10	≦0.10		≤0.05 ≤0.75
		全粮規格	ENi-1	ENICr-4	ENiCu-7	ENiCrFe-1 ≦0.08 ≦0.75	ENiCrFe-2 ≤0.10 ≤0.75 1.0~3.5 ≤0.03	ENiCrFe-3 ≤0.10	ENiCrFe-4 ≦0.20	ENiCrFe- 7(d)

(A)	女 心 女 心 が が 知	:	元素 度MPa 率 三1.5 ≤0.50 ≥650 ≥	元素 度MPa ≤1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥660	 元素 度MPa 三1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 一 ≤0.50 ≥650 	 元素 度MPa ≦1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 — ≤0.50 ≥650 — ≤0.50 ≥650 	 元素 度MPa 三1.5 三0.50 三650 1.5~3.5 三0.50 三650 三650 三650 三650 三650 三620 三630 三630<th> 元素 度MPa 三1.5 三0.50 三650 1.5~3.5 三0.50 三650 一 三0.50 三620 三1.0 三0.50 三690 三1.0 三0.50 三690 </th><th> 元素</th><th> 元素 度MPa 三1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 一 ≤0.50 ≥620 三1.0 ≤0.50 ≥690 </th><th> 元素 度MPa 三1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 — ≤0.50 ≥650 三1.0 ≤0.50 ≥690 □ 2.0~4.0 ≤0.50 ≥650 </th><th> 元素</th><th> 元素</th><th> 元素</th><th> 元素</th><th> 元素</th><th> 元素</th><th> 元素</th>	元素 度MPa 三1.5 三0.50 三650 1.5~3.5 三0.50 三650 一 三0.50 三620 三1.0 三0.50 三690 三1.0 三0.50 三690	元素	 元素 度MPa 三1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 一 ≤0.50 ≥620 三1.0 ≤0.50 ≥690 	 元素 度MPa 三1.5 ≤0.50 ≥650 1.5~3.5 ≤0.50 ≥650 — ≤0.50 ≥650 三1.0 ≤0.50 ≥690 □ 2.0~4.0 ≤0.50 ≥650 	元素	元素	元素	元素	元素	元素	元素
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ā		≥1.5	— ≤1.5 — 1.5~3.5	≤1.5 1.5~3.5 ≤1.0 1.5~2.2 -	- - - - - - - - ≤1.0 1.5~2.2 ≤1.0 ≤0.3	- - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤1.0 ≤0.3 - ≤1.0	- - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤1.0 ≤0.3 - ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.0 ≤1.5 − ≤1.0 ≤1.5 − ≤1.0 ≤1.0 ≤1.5 − ≤1.0 ≤1.0 ≤1.5 − ≤1.0 ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5 − ≤1.5	- - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 ≤1.0 ≤1.0	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td> - - ≤ 1.5 - - 1.5~3.5 ≤ 1.0 1.5~2.2 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 − ≤ 1.0 - ≤ 1.0 - − ≤ 1.0 - − ≤ 1.0</td> <td> - - ≤ 1.5 </td> <td> - - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 ≤2.5 - ≤1.0 − ≤1.0 − - ≥0~4.0 − - 2.0~4.0 ≤3.0 - ≤3.0 ≤3.0 - ≤3.0</td> <td>- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<!--</td--><td> - - ≤ 1.5 - - 1.5~3.5 - - 1.5~3.5 ≤ 1.0 1.5~2.2 - ≤ 2.5 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 − - ≥ 0.~4.0 − - ≥ 0.~4.0 ≤ 3.0 - ≤ 3.0 ≤ 1.0 0.1~0.5 - ≤ 2.5 - ≤ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - </td><td> - - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤2.5 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 ∈2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 − ≤1.0 − ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0</td><td> - - ≤1.5 - - 1.5~3.5 = 1.0 1.5~2.2 = 1.0 ≤0.3 - = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 - - 2.0~4.0 = 3.0 − ≥3.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤</td><td> - - ≤1.5 - - 1.5~3.5 - - 1.5~3.5 ≤1.0 1.5~2.2 ≤1.0 ≤0.3 − ≤2.5 − ≤1.0 ≤1.0 − ≥1.0 − − ≥0~4.0 − − ≥0~4.0 ≤3.0 − ≥3.0 ≤2.5 − ≤3.0 (b) − − (c) − ≥1.0 ≤2.5 − ≤1.0 (d) − − ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤3.0~4.5 − </td></td>	- - ≤ 1.5 - - 1.5~3.5 ≤ 1.0 1.5~2.2 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 − ≤ 1.0 - ≤ 1.0 - − ≤ 1.0 - − ≤ 1.0	- - ≤ 1.5	- - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 ≤2.5 - ≤1.0 − ≤1.0 − - ≥0~4.0 − - 2.0~4.0 ≤3.0 - ≤3.0 ≤3.0 - ≤3.0	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td> - - ≤ 1.5 - - 1.5~3.5 - - 1.5~3.5 ≤ 1.0 1.5~2.2 - ≤ 2.5 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 − - ≥ 0.~4.0 − - ≥ 0.~4.0 ≤ 3.0 - ≤ 3.0 ≤ 1.0 0.1~0.5 - ≤ 2.5 - ≤ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - </td> <td> - - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤2.5 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 ∈2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 − ≤1.0 − ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0</td> <td> - - ≤1.5 - - 1.5~3.5 = 1.0 1.5~2.2 = 1.0 ≤0.3 - = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 - - 2.0~4.0 = 3.0 − ≥3.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤</td> <td> - - ≤1.5 - - 1.5~3.5 - - 1.5~3.5 ≤1.0 1.5~2.2 ≤1.0 ≤0.3 − ≤2.5 − ≤1.0 ≤1.0 − ≥1.0 − − ≥0~4.0 − − ≥0~4.0 ≤3.0 − ≥3.0 ≤2.5 − ≤3.0 (b) − − (c) − ≥1.0 ≤2.5 − ≤1.0 (d) − − ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤3.0~4.5 − </td>	- - ≤ 1.5 - - 1.5~3.5 - - 1.5~3.5 ≤ 1.0 1.5~2.2 - ≤ 2.5 - ≤ 1.0 ≤ 2.5 - ≤ 1.0 − - ≥ 0.~4.0 − - ≥ 0.~4.0 ≤ 3.0 - ≤ 3.0 ≤ 1.0 0.1~0.5 - ≤ 2.5 - ≤ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 - ≥ 1.0 2.50 -	- - ≤1.5 - - 1.5~3.5 ≤1.0 1.5~2.2 - ≤2.5 - ≤1.0 ≤2.5 - ≤1.0 ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 − - ≥1.0 − ≤1.0 ∈2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 - ∈3.0 ∈3.0 ∈3.0 ≤2.5 − ≤1.0 − ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0 ∈3.0	- - ≤1.5 - - 1.5~3.5 = 1.0 1.5~2.2 = 1.0 ≤0.3 - = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 - - 2.0~4.0 = 3.0 − ≥3.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤1.0 = 2.5 - ≤	- - ≤1.5 - - 1.5~3.5 - - 1.5~3.5 ≤1.0 1.5~2.2 ≤1.0 ≤0.3 − ≤2.5 − ≤1.0 ≤1.0 − ≥1.0 − − ≥0~4.0 − − ≥0~4.0 ≤3.0 − ≥3.0 ≤2.5 − ≤3.0 (b) − − (c) − ≥1.0 ≤2.5 − ≤1.0 (d) − − ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤2.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤2.5 − ≤3.0~4.5 ≤3.0~4.5 −
Co AI W				l	 ≦1.0 1.5~2.2	 ≦1.0 1.5~2.2 ≦1.0 ≦0.3				= 51.0 1.5~2.2 = 1.0 1.5~2.2 = 1.0 ≤ 0.3 = 22.5			-		= 1.0 1.5~2.2 = 1.0 1.5~2.2 = 2.5	= 1.0 1.5~2.2 = 1.0 1.5~2.2 = 2.5	= 1.0 1.5~2.2 = 1.0 1.5~2.2 = 1.0	S
Cu ⊆ 0.50	≥0.50		≥0.50		≦0.20 ≦1.0	≤0.20 ≤1.0 ≤0.30 ≤1.0	≤0.20 ≤1.0 ≤0.30 ≤1.0 ≤0.50 ≤2.5	≤0.20 ≤1.0 ≤0.30 ≤1.0 ≤0.50 ≤2.5 ≤0.50 ≤2.5	S	≤0.20 ≤1.0 ≤0.30 ≤1.0 ≤0.50 ≤2.5 ≤0.50 ≤2.5 ≤0.50 ≤1.0 ≤0.50 ≤1.0 ≤0.50 ≤1.0 ≤0.50 ≤1.0	\$0.20 \$\equiv 0.30\$\$ \$\equiv 0.20\$\$ \$\equiv 0.30\$\$ \$\equiv 0.30\$\$ \$\equiv 0.30\$\$ \$\equiv 0.30\$\$ \$\equiv 0.30\$\$\$ \$\equiv 0.30\$\$\$ \$\equiv 0.30\$\$\$ \$\equiv 0.30\$	≤0.20 ≤1.0 ≤0.30 ≤1.0 ≤0.50 ≤2.5 ≤0.50 ≤2.5 ≤0.50 ≤1.0 ≤0.0 ≤0	≤0.20 ≤1.0 ≤0.30 ≤1.0 ≤0.50 ≤2.5 ≤0.50 ≤2.5 ≤0.50 ≤1.0 ≤0.50 ≤1.0 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50 ≤0.50	\$0.20 \$\leq 1.0\$ \$0.30 \$\leq 1.0\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 1.0\$ \$0.3-1.3 \$	\$0.20 \$\leq 1.0\$ \$0.30 \$\leq 1.0\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.3~1.3 \$	\$0.20 \$\leq 1.0\$ \$0.30 \$\leq 1.0\$ \$0.30 \$\leq 1.0\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.50\$ \$0.50 \$\leq 2.50\$ \$0.50 \$\leq 2.50\$ \$0.50 \$\leq 2.50\$	\$\le 0.20 \equiv 1.0\$ \$\le 0.30 \equiv 1.0\$ \$\le 0.30 \equiv 1.0\$ \$\le 0.50 \equiv 2.5\$ \$\le 0.50 \equiv 2.5\$	\$0.20 \$\leq 1.0\$ \$0.30 \$\leq 1.0\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 2.5\$ \$0.50 \$\leq 3.0\$ \$0.3-1.3 \$
=	1 1	I		- 0.10~ ≤0.20 0.40		l	1 1	1 1 1	1 1 1 1	1 1 1 1 1			0.3			1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1
2.0 0.5~3.0 2.0 1.0~3.5				>.	~0.		7.0	7.0 —	7.0 7.0 25				· · · · · · · · · · · · · · · · · · ·					
V Fe - ≤12.0 - ≤12.0 8.0~					21.0~	≦0.60 4.0~7.0		≦0.60 4.0~7.0	≤0.60 4.0~7.0 — ≤2.25	≤0.60 4.0~7.0 — ≤2.25 — ≤10.0	≤0.60 4.0~7.0 — ≤2.25 — ≤10.0 — ≤7.0	\$0.60 4.0~7.0 - \$2.25 - \$10.0 - \$7.0 - 1.0~3.0	\$0.60 4.0-7.0 - \$2.25 - \$10.0 - \$7.0 - 1.0-3.0 - 2.0-5.0	 ≤0.60 4.0~7.0 ≤2.25 = ≤10.0 ≤10.0 = 10.0 1.0~3.0 1.0~5.0 1.80~ 2.1.0 	= 0.60 4.0~7.C = ≤2.25 - ≤10.0 - ≤7.0 - 1.0~3.C - 2.0~5.C - 21.0 - 17.0~ - 17.0~	= 0.60 4.0~7.7 − ≤2.25 − ≤10.0 − ≤10.0 − 1.0~3.0 − 2.0~5.0 − 2.0~5.0 − 11.0~ − 17.0~ − 20.0	 ≤0.60 4.0~7.0 − ≤2.25 − ≤10.0 − − 0.0~3.0 − 0.0~5.0 − 0.0~5.0 − 18.0~ − 17.0~ 17.0~ 17.0~ 17.0~ 20.0 0.0 ≤0.35 4.0~7.0 	 ≤0.60 4.0~7.0 − ≤2.25 − ≤10.0 − − 10~3.0 − 10~5.0 − 10.0 17.0 17.0 − 20.0 − 20.0 = 20.35 4.0~7.0 ≤0.35
2.5~5.5 1.0~3.5	2.5~5.5	1.0~3.5			ı	26.0~30.0 ≦(23.0~27.0						23.0~27.0 26.0~30.0 17.0~ 20.0 18.0~ 22.0 27.0~32.0 26.0~30.0	23.0~27.0 26.0~30.0 17.0~ 20.0 18.0~ 22.0 27.0~32.0 26.0~30.0 5.5~7.5 8.0~	230-27.0 260-30.0 17.0~ 20.0 18.0~ 22.0 27.0-32.0 260-30.0 8.0~ 10.0 8.0~	23.0~27.0 26.0~30.0 17.0~ 20.0 18.0~ 22.0 27.0~32.0 26.0~30.0 5.5~7.5 8.0~ 10.0 8.0~10.0	23.0~27.0 26.0~30.0 17.0~ 20.0 18.0~ 22.0 27.0~32.0 26.0~30.0 5.5~7.5 8.0~ 10.0 8.0~10.0
12.0~17.0 13.0~17.0 24.0~26.0			24.0~26.0		26.0~29.0	≦1.0 2		2.5~5.5	5~5.5	2.5~5.5 ≤1.0 0.5~3.5	2.5~5.5 ≅1.0 0.5~3.5	2.5~5.5 ≤1.0 0.5~3.5 — 1.0~3.0	2.5~5.5 = 1.0 0.5~3.5 - 1.0~3.0 0.5~1.5	2.5~5.5 ≤1.0 0.5~3.5 — 1.0~3.0 0.5~1.5 21.0~23.5	2.5~5.5 = 1.0 0.5~3.5 - 1.0~3.0 0.5~1.5 21.0~23.5 20.5~23.0	2.5-5.5 = 1.0 0.5-3.5 - 1.0-3.0 0.5-1.5 21.0-23.5 20.5-23.0	2.5~5.5 = 1.0 0.5~3.5 1.0~3.0 0.5~1.5 21.0~23.5 20.5~23.0 14.5~16.5	2.5~5.5 ≤1.0 0.5~3.5 — 1.0~3.0 0.5~1.5 21.0~23.5 20.0~23.0 14.5~16.5 14.5~16.5
Ni (a)						8 殘量		8		7 (11								
00 0.015					04 ≦0.03	≦0.04 ≦0.03		04 ≦0.03										
Mn P 1.0~4.5 ≤ 0.02 1.0~3.5 ≤ 0.02				≤1.0 ≤0.04	≦2.5 ≤0.04	<10												
Si ≦ 0.75 ≤ 0.75	≤0.75 ≤0.75	≦0.75		0.1 ≥	2.5~		0.1	0.1	0.1 7 7 7 7 7 7 7 1 .0	≤ 1.0 ≤ 0.2 ≤ 0.75	≦1.0 ≤0.2 ≤0.75 ≤0.75	≤1.0 ≤0.2 ≤0.75 ≤0.75 ≤0.75 ≤0.75	≤1.0 ≤1.0 ≤0.2 ≤0.75 ≤0.75 ≤0.75 ≤0.75 ≤0.2					
S ≤ 0.15	≥0.15 0.00	0000	=0.20	0.10~	0.05~	,	≥0.07	≤0.07 ≤1.0 ≤0.12 ≤1.0	≤0.07 ≤0.12 ≤0.02			\$0.07 \$0.02 \$0.02 \$0.10 \$0.10 \$0.10	≤ 0.07 ≤ 0.07 ≤ 0.07 ≤ 0.07 ≤ 0.07 ≤ 0.00 ≤ 0.00 ≤ 0.02	\$0.07 \$0.02 \$0.02 \$0.10 \$0.10 \$0.02 \$0.02	\$0.07 \$0.02 \$0.02 \$0.10 \$0.10 \$0.02 \$0.05 \$0.05 \$0.05	\$0.07 \$0.02 \$0.02 \$0.02 \$0.00 \$0.00 \$0.05 \$0.05	\$0.07 \$0.02 \$0.02 \$0.02 \$0.02 \$0.02 \$0.05 \$0.05 \$0.05 \$0.05	\$0.07 \$0.02 \$0.02 \$0.02 \$0.02 \$0.02 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05
ENICrFe-9	ENiCrFe-9		ENiCrFe-10	ENiCrFe-12	ENiCrFeSi-1	7 7 7 7 7	ENIMo-1	ENIMo-1 ENIMo-3	ENIMO-1 ENIMO-3 ENIMO-7	ENIMO-3 ENIMO-7 ENIMO-8	ENIMO-3 ENIMO-3 ENIMO-8 ENIMO-9	ENIMO-1 ENIMO-3 ENIMO-8 ENIMO-9 ENIMO-10	ENIMO-1 ENIMO-9 ENIMO-9 ENIMO-10 ENIMO-10	ENIMO-7 ENIMO-8 ENIMO-9 ENIMO-10 ENIMO-11	ENIMO-7 ENIMO-8 ENIMO-9 ENIMO-10 ENIMO-11 ENICAMO-1	ENIMO-1 ENIMO-3 ENIMO-9 ENICAMO-10 ENICAMO-11 ENICAMO-3 ENICAMO-3	ENIMO-1 ENIMO-9 ENIMO-9 ENICHMO-11 ENICHMO-1 ENICHMO-3 ENICHMO-3 ENICHMO-3	ENIMO-1 ENIMO-9 ENIMO-9 ENICAMO-1 ENICAMO-1 ENICAMO-2 ENICAMO-2 ENICAMO-3 ENICAMO-3

AWS銲材規格

AWS A5.11 · A5.11M

252

Sim	۵,				2	2 2 2 2 2	0								級後	訊器
≤ 0.2 ≤ 1.5 ≤ 1.5 ≤ 1.5 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 0.5 ≤ 0.5		S	(a)	Ç	Мо	>	Fe	Nb+Ta	F	Cu	ဝိ	₹	8	世 光 米 素	抗拉強 度MPa	路衛務%
≤1.0 ≤1.0 ≤0.2 ≤1.0 ≤1.0 ≤1.0 ≤0.7 ≤2.2 ≤0.2 ≤1.0 ≤0.2 ≤1.0 ≤0.2 ≤1.0 ≤0.2 ≤0.5	≥ 0.04	≥0.03		14.0~18.0	14.0~	ı	≥3.0	ı	€0.70	≥0.50	≥2.0	ı	≥0.5	≥0.50	069≅	≥25
≤ 0.2 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.0 ≤ 1.5 ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.2 ≤ 0.5 ≤ 0	≥0.04 ≤0	€0.03		21.0~23.5	6.0~8.0	ı	18.0~	≥0.5	ı	1.5~2.5	≥5.0	ı	1.5	≥0.50	≥620	≥25
≤ 1.0 ≤ 1.5 ≤ 0.7 ≤ 2.2 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 0.2 ≤ 1.0 ≤ 0.2 ≤ 0.5 ≤ 0.5	€0.03 0.0	0.015	溪量 2	20.0~22.5	12.5~	€0.35	2.0~6.0	I	ı	€0.50	≥2.5	I	2.5~3.5	€0.50	069≅	≧25
≤0.03 ≤0.7 ≤2.2 ≤0.02 ≤0.2 ≤1.0 ≤0.02 ≤0.25 ≤1.0 = ≤0.20 ≤0.2 ≤0.5	≥ 0.04	≦0.02		28.0~31.5	4.0~6.0	ı	13.0~	0.3~1.5	ı	1.0~2.4	≥5.0	ı	1.5~4.0	€0.50	≥ 585	≧25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≤0.03 ≤0	≦0.02	溪	20.5~22.5	8.8~	ı	≥ 5.0	1.0~2.8	I	€0.50	I	I	I	€0.50	≥650	≥35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≥ ≤ 0.015	≦0.01	凝量 2	22.0~24.0	15.0~	ı	5.1	ı	ı	€0.50	ı	I	I	€0.50	069≅	≧25
\(\le \) \(≤0.02 ≤0	≦0.02		19.0~23.0	15.0~	ı	≥ 5.0	ı	≦0.25	≤0.50		ı	3.0~4.4	€0.50	069	≥30
	≤0.03 0.0	≥ 0.015		22.0~24.0	15.0~	ı	≥3.0	ı	ı	1.3~1.9	≥2.0	ı	I	€0.50	069≅	≧25
ENICrMo-18 ≤0.03 ≤0.6 ≤0.7 ≤0	≤0.03 ≤0	≦0.02		19.0~22.0	10.0~	≦0.15	12.0~	≥0.3	ı	≤0.30	0.1	€0.5	1.0~2.0	€0.50	≥650	≥30
$\begin{array}{ccc} \text{ENICrMo-} & \leq 0.02 & \leq 0.2 & \leq 1.5 & \leq 0.2 \\ 19^{(e)} & \leq 0.2 & \leq 0.2 & \leq 0.2 & \leq 0.2 \end{array}$	≤0.03 ≤0	≦0.02		20.0~23.0	19.0~	ı	5.1	ı	ı	≥0.5	≥0.3	€0.4	≥0.3	€0.50	≥830	≥20
0.05^{\sim} $\leq 0.75 \ 0.3 \sim 2.5$	€0.03 0.0	≥ 0.015		21.0~26.5	8.0~	ı	≥ 5.0	0.1	ı	≥0.50	9.0~	ı	I	≥0.50	≥620	≥25
ENICrWMo-1 0.05^{\sim} 0.25^{\sim} $0.3 \sim 1.0 \leq 0.02$		≥ 0.015		20.0~24.0	1.0~3.0	ı	3.0	ı	≦0.10	≥0.50	≥5.0	€0.50	13.0~	€0.50	≥620	≥20

註釋: a.殘量中包含Co元素 b.在Co有規定時,含量為≦0.12 c.在Ta有規定時,含量為≦0.30

d.在B有規定時,含量為≤0.005,在Zr有規定時,含量為≤0.020,e.N=0.02~0.15

W

S銲材

規

鎳與鎳基合金電銲條規格及特性說明(AWS A5.11/A5.11M)

E Ni-1

- ●全熔填銲接金屬的典型成份約含有95%Ni、2.5%Ti,其中Ti元素能與C結合,使游離狀態的C降低。耐腐蝕性佳,尤其是耐鹼金屬腐蝕的能力。適用於200,201鎳金屬以及鎳金屬與鐵金屬之接合:類如商用純鎳鍛鑄件、鎳護面鋼之鎳金屬側以及與鐵金屬異材銲接在鐵金屬側之緩衝銲層等。
- ●主要用於化工、食品、壓力容器等部件。典型鎳基母材規格為ASTM B160, B161, B162 及B163。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。

E NiCu-7

- ●全熔填銲接金屬的典型成份約含有66%Ni、30%Cu、3%Mn、 1%Fe,可耐海水、鹽類以及還原酸性物質的侵蝕。適用於Monel(Ni-Cu)合金以及Monel合金與鐵金屬的銲接(包含Monel護面鋼的 Monel側以及鐵金屬表面的Monel護面層)。
- ●主要用於幫浦零件、閥件、石化工業設備等部件。典型Monel(鎳銅)母材規格為ASTM B127, B163, B164 及B165。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。
- 銲件可在銲後原態或經特別規定的銲後熱處理條件下使用,若需銲後 熱處理,銲接程序書必須事先通過檢定以確保銲件之機械性能可符合 規定。

E NiCrFe-1

- ●全熔填銲接金屬的典型成份約含有70%Ni、15%Cr、3.5%Mn、8%Fe、2.5%Nb+Ta,強度優良、耐腐蝕性佳。適用於Ni-Cr-Fe合金以及Ni-Cr-Fe合金與鐵金屬的銲接(包含Ni-Cr-Fe合金護面鋼的Ni-Cr-Fe合金側以及鐵金屬表面的Ni-Cr-Fe合金護面層,鋼材與鎳基合金之異材銲接)。
- ●適用温域自超低温到980℃高温之間。但當環境温度超過820℃以上時,銲接金屬的抗氧化能力及強度會下降。典型鎳鉻鐵母材規格為ASTM B163, B166, B167 及B168。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。

E NiCrFe-2

●全熔填銲接金屬的典型成份約含有70%Ni、15%Cr、2%Mn、8%Fe、2%Nb+Ta、1.5%Mo,強度優良、耐高温氧化及耐低温衝擊

- 性佳。適用於Ni-Cr-Fe合金、9%鎳鋼、及各種不同種類金屬(包含碳鋼、不銹鋼、鎳與鎳基合金等)的異材銲接,母材可為鑄件或鍛件。
- ●適用温域自超低温到980℃高温之間。但當環境温度超過820℃以上時,銲接金屬的抗氧化能力及強度會下降。典型鎳鉻鐵母材規格為ASTM B163. B166. B167 及B168。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。

E NiCrFe-3

- ●全熔填銲接金屬的典型成份約含有65%Ni、15%Cr、7.5%Mn、 8%Fe、2%Nb+Ta。強度優良、耐高温氧化及耐低温衝擊性佳。適用 於Ni-Cr-Fe合金以及Ni-Cr-Fe合金與鐵金屬的銲接(包含Ni-Cr-Fe 護面鋼的Ni-Cr-Fe側以及鐵金屬表面的Ni-Cr-Fe護面層)。
- 適用温域自超低温到480℃高温之間。主要用於化學貯槽及壓力容器等部件。典型鎳鉻鐵母材規格為ASTM B163, B166, B167 及B168。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。

E NiCrMo-3

- ●全熔填銲接金屬的典型成份約含有60%Ni、22%Cr、9%Mo、5%Fe、3.5%Nb+Ta。強度優良、耐腐蝕性佳,包括耐點蝕,縫隙腐蝕以及在多硫酸性介質中的應力腐蝕龜裂等。適用於Ni-Cr-Mo合金以及Ni-Cr-Mo合金與鐵金屬的銲接(包含Ni-Cr-Mo合金護面鋼的Ni-Cr-Mo合金側以及鐵金屬表面的Ni-Cr-Mo合金護面層,鋼材與鎳基合金之異材銲接)。
- ●適用温域自超低温到540℃高温之間。主要用於化工設備等部件。典型鎳鉻鉬母材規格為ASTM B443, B444及B446。
- ●線徑≦3.2mm適用於全姿勢銲接;線徑>3.2mm只適用於平銲及橫 銲。

E NiCrMo-4

- ●全熔填銲接金屬的典型成份約含有57%Ni、15.5%Cr、16%Mo、5.5%Fe、4%W、低C(≦0.02%),可耐多種高度腐蝕環境,尤其是耐點蝕和耐縫隙腐蝕的能力。
- 銲接金屬中碳含量極低,可有效抑制碳化物的析出。適用於低C級Ni-Cr-Mo合金以及低C級Ni-Cr-Mo合金與鐵金屬的銲接(包含低C級Ni-Cr-Mo合金護面鋼的低C級Ni-Cr-Mo合金側以及鐵金屬表面的低C級Ni-Cr-Mo合金護面層,鋼材與鎳基合金之異材銲接)。
- ●典型鎳鉻鉬母材規格為ASTM B574, B575, B619, B622及B626。
- 銲接姿勢以平銲為主。

Α

W

S

Specification for Welding Electrodes and Rods for Cast Iron

AWS A5.15-90R 鑄鐵電銲條及棒材規格

電銲條記號

── 全熔填銲接金屬化學成份記號(見表一)例:E NiFe-CI E XXX-X

表一 全熔填銲接金屬化學成份記號

				16	學成份	} Wt % (1)			
銲條規格	С	Si	Mn	Р	S	Fe	Ni ⁽²⁾	Cu (3)	Al	其他 元素
ENi-CI	2.0	4.0	2.5	_	0.03	8.0	85以上	2.5	1.0	1.0
ENi-CI-A	2.0	4.0	2.5	_	0.03	8.0	85以上	2.5	1.0~3.0	1.0
ENiFe-CI	2.0	4.0	2.5	_	0.03	殘餘	45~60	2.5	1.0	1.0
ENiFe- CI-A	2.0	4.0	2.5	_	0.03	殘餘	45~60	2.5	1.0~3.0	1.0
ENiFeMn -Cl	2.0	1.0	10~14	_	0.03	殘餘	35~45	2.5	1.0	1.0
ENiCu-A	0.35~0.55	0.75	2.3	_	0.025	3.0~6.0	50~60	35~45	_	1.0
ENiCu-B	0.35~0.55	0.75	2.3	_	0.025	3.0~6.0	60~70	25~35	_	1.0
ESt (4)	0.15	0.15	0.6	0.04	0.04	殘餘	_	_	_	_

備註1:單一值表最大值 備註2:Ni含量中包含Co 備註3:Cu含量中包含Aq 備註4:為使用心線化學成份

ENi-CI(純鎳)

- ●主要用於接合、修補或修復一般灰鑄鐵,以及灰鑄鐵與其他鐵金屬或 非鐵金屬。主要適合中小型日應力不大或磷含量不高的鑄件。
- 銲接金屬的強度及延展性較ENiFe-CI低, 嫡用在需與母材高度稀釋 日加丁量大的丁件。

ENiFe-CI(鎳鐵)

•主要用於接合或修補各不同種類的鑄鐵工件(包含球狀石墨鑄鐵), 以及各種鑄鐵與一般碳鋼、低合金鋼以及部分非鐵金屬的銲接。尤其 適用於高含P量(約含0.20%)、較厚且高度拘束或高強度的鑄件。

- 為鑄鐵專用銲條,可嫡合全姿勢銲接,被覆的熔點很低,銲接金屬加 丁性差。
- •因與母材高度的稀釋, 銲接區硬化現象無法避免。僅適用於修補鑄件 的小蝕點或小裂縫,以及不需銲後加工的工件。
- 銲接金屬的收縮遠高於鑄鐵,冷卻時,會伴隨高應力的產生,而有龜 裂之虞。原則上不需預熱,但銲接區以外的部位可能產生高應力時, 銲件需施以適當的預熱。
- 為避免與母材過份稀釋而可能造成龜裂,宜使用小電流銲接。通 常建議銲接電流為60~95A(線徑2.6mm)、90~120A(線徑 3.2mm)、110~150A(線徑4.0mm)。
- ●可使用DC+(DCEP)或AC電流銲接,宜採短銲道且相互錯開以分 散銲接熱。並且在銲接後立即施以敲擊以去除殘餘應力。

 \mathbb{W} S

AWS A5.17 · A5.17M

AWS A5.17 / A5.17M*-97 碳鋼潛弧銲銲材規格

Specification for carbon Steel Electrodes and Fluxes for Submerged Arc Welding

分類記號(強制性)

潛弧銲劑記號

使用回收銲劑或回收銲劑與新銲劑混合(若 無S記號表示使用新銲劑)

銲接金屬(全銲道)最低抗拉強度記號,單 位MPa (標記數值43表示抗拉強度要求為 430至560 MPa, 見表一)

熱處理條件記號; A表示銲後原態; P表示後 熱處理狀態,時間及温度規定見表二

表示衝擊試驗温度(℃),銲接金屬之衝擊 韌性大於或等於27J, 見表三

銲線之化學成份記號,見表四及表五;居首 字母E表銲線;居次字母C表合成型銲線**(表 五);無C字母表實心銲線(表四)

ESXXX-ECXXX HX 分類記號(非強制性)

上 銲接金屬擴散氫試驗記號。(見表六)

註釋: * A5.17 / A5.17M分別使用英制與公制標稱單位,請參見A5.1 / A5.1M之説明

表一 熔填金屬抗拉試驗(全銲道)要求

銲藥一盆	早線規格	抗拉	強度	降伏	強度	延伸率
A5.17	A5.17M	ksi	MPa	ksi	MPa	%
F6XX-EXXX	F43XX-EXXX	60~80	430~560	48	330	22
F7XX-EXXX	F48XX-EXXX	70~95	480~660	58	400	22

表二 後熱處理條件要求:

記號	熱處理條件
А	銲後原態
Р	加熱維持温度於620±15℃持温1小時(-0,+15分鐘),於試片置入前爐温不可超過315℃。加熱速率每小時不可超過220℃。持温620±15℃後,爐冷至315℃,冷卻速率每小時不可超過195℃。當爐內温度低於315℃後,可將試片自爐內取出空冷至室温。

表三 銲接金屬衝擊試驗要求

記號	溫度℃	最低衝擊能量
0	0	
2	-20	
3	-30	27J
4	-40	273
5	-50	
6	-60	
Z	未热	見定

表四 實心銲線化學成份要求

	20 21 1M 10 3-1M 10 X 11								
銲線			1	化學成份 Wt	%*				
規格	С	Si	Mn	Р	S	Cu	Ti	其他元素 合計	
			低	锰銲線					
EL8	0.10	0.07	0.25~0.60	0.030	0.030	0.35	_	0.50	
EL8K	0.10	0.10~0.25	0.25~0.60	0.030	0.030	0.35	_	0.50	
EL12	0.04~0.14	0.10	0.25~0.60	0.030	0.030	0.35	_	0.50	
			中	锰銲線					
EM11K	0.07~0.15	0.65~0.85	1.00~1.50	0.025	0.030	0.35	_	0.50	
EM12	0.06~0.15	0.10	0.80~1.25	0.030	0.030	0.35	_	0.50	
EM12K	0.05~0.15	0.10~0.35	0.80~1.25	0.030	0.030	0.35	_	0.50	
EM13K	0.06~0.16	0.35~0.75	0.90~1.40	0.030	0.030	0.35	_	0.50	
EM14K	0.06~0.19	0.35~0.75	0.90~1.40	0.025	0.025	0.35	0.03~0.17	0.50	
EM15K	0.10~0.20	0.10~0.35	0.80~1.25	0.030	0.030	0.35	_	0.50	
			高	锰銲線					
EH10K	0.07~0.15	0.05~0.25	1.30~1.70	0.025	0.025	0.35	_	0.50	
EH11K	0.06~0.15	0.80~1.15	1.40~1.85	0.030	0.030	0.35	_	0.50	
EH12K	0.06~0.15	0.20~0.65	1.50~2.00	0.025	0.025	0.35	_	0.50	
EH14	0.10~0.20	0.10	1.70~2.20	0.030	0.030	0.35	_	0.50	
EG				未規定					

*單一值為最大值

W

S銲材規格

AWS A5.18 · A5.18M

表五 合成型銲線全熔填銲接金屬化學成份要求

				化學成份 %			
銲線規格	С	Si	Mn	Р	S	Cu	其他元素 合計
EC1	≦0.15	≦0.90	≦1.80	≦0.035	≦0.035	≦0.35	≦0.50
ECG				未規定			

表六 銲接金屬氫含量要求

銲藥-銲線規格	擴散氫記號	銲接金屬擴散氫含量平均值 ml/100g
所有規格	H16	16.0
所有規格	H8	8.0
所有規格	H4	4.0
所有規格	H2	2.0

AWS A5.18 / A5.18M*: 2005 碳鋼氣體遮護電弧銲(線材及棒材)規格

Specification for carbon Steel Electrodes and Rods for Gas Shielded Arc Welding

分類記號(強制性)

指被使用為電極或棒材(ER)兩者中之一或僅以電極(E)的型態使用(統稱填料金屬)。註**

銲接金屬(全銲道)最低抗拉強度(依A5.18規範規定);70表示單位為70,000psi(見表三)

填料金屬為實心銲線(S)或合成型銲線***(C)

實心銲線化學成份或合成型銲線之全熔填 銲接金屬化學成份。GS表示填料金屬用 於單道銲接(見表一、表二)

核能設備專用

ER 70 S - X N HZ E 70 C - X Y N HZ

ER 48 S - X N HZ E 48 C - X Y N HZ

分類記號(非強制規定)

擴散氫試驗要求(見表四)

合成型銲線遮護氣體種類;C表示 CO_2 氣體;M表示75~80%氫氣 $+25~20%CO_2$ 氣體

銲接金屬(全銲道)最低抗拉強度(依A5.18M規格規定);48表示單位為480MPa(見表三)

註:

- *A5.18/A5.18M分別使用英制與公製標稱單位,請參見A5.1 / A5.1M説明
- * * "E"與 "ER"之含意,請參見A5.1 / A5.1M説明
- * * * 合成型銲線(即composite wire, 俗稱metal cored wire)

銲線	規格		化氧				學成份wt% ^(a)							
A5.18	A5.18M	С	Mn	Si	Р	S	Ni	Cr	Мо	V	Cu(b)	Ti	Zr	Al
ER70S-2	ER48S-2	0.07	0.90~ 1.40	0.40~ 0.70	0.025	0.035	0.15	0.15	0.15	0.03	0.50	0.05~ 0.15	0.02~ 0.12	0.05~ 0.15
ER70S-3	ER48S-3	0.06~ 0.15	0.90~ 1.40	0.45~ 0.75	0.025	0.035	0.15	0.15	0.15	0.03	0.50	_	_	_
ER70S-4	ER48S-4	0.06~ 0.15	1.00~ 1.50	0.65~ 0.85	0.025	0.035	0.15	0.15	0.15	0.03	0.50	_	_	_
ER70S-6	ER48S-6	0.06~ 0.15	1.40~ 1.85	0.80~ 1.15	0.025	0.035	0.15	0.15	0.15	0.03	0.50	_	_	_
ER70S-7	ER48S-7	0.07~ 0.15	1.50~ 2.00	0.50~ 0.80	0.025	0.035	0.15	0.15	0.15	0.03	0.50	_	_	_
ER70S-G	ER48S-G						未規	定 (c))					

表二 合成型銲線全熔填銲接金屬化學成份要求

銲線	銲線規格			化學成份wt% ^(a)								
A5.18	A5.18M	С	Si	Mn	Р	S	Ni (d)	Cr (d)	Mo (d)	A (q)	Cu	
多道/												
E70C-3X	E48C-3X	0.12	1.75	0.90	0.03	0.03	0.50	0.20	0.30	0.08	0.50	
E70C-6X	E48C-3X	0.12	1.75	0.90	0.03	0.03	0.50	0.20	0.30	0.08	0.50	
E70C-G(X)	E48C-3X	未規定 ^(e)										
單道	單道銲接											
E70C-GS(X)	E48C-GS(X)	未規定 ^(f)										

註釋: (表一及表二)

- a. 單一值為最大值
- b. 銅總含量須低於0.50%
- c. 化學成份未特別規定,但不可額外添加 Ni, Cr, Mo或V。化學成份必須記錄。成份要 求可依買賣雙方協商而定
- d.Ni, Cr, Mo, V合計總量須低於0.50%
- e. 化學成份必須記錄。成份要求可依買賣雙方協商而定
- f. 單道銲接專用,因稀釋率頗高,故未規定化學成份

表三 銲接金屬(全銲道)抗拉試驗及衝擊試驗要求

銲線	規格	抗拉強	度 (a)	降伏強	度 (a)	延伸 率 (a)	衝擊試驗	2六=苯/三 6曲
A5.18	A5.18M	psi	MPa	psi	MPa	%	平均值 A5 .18M	遮護氣體
ER70S-2	ER48S-2						≧27J (-30°C)	
ER70S-3	ER48S-3						≧27J (-20°C)	
ER70S-4	ER48S-4	70,000	480	58,000	400	22	未規定	CO ₂
ER70S-6	ER48S-6						≧27J (-30°C)	
ER70S-7	ER48S-7						≧27J (-30°C)	
ER70S-G	ER48S-G	70,000	480	58,000	400	22	依買賣雙方協議	b
E70C-3X	E48C-3X						≧27J (-20°C)	
E70C-6X	E48C-6X	70,000	480	58,000	400	22	≧27J (−30°C)	75~80%Ar/ CO ₂ 或CO ₂
E70C- G(X)	E48C- G(X)	70,000	480	58,000	400	22	依買賣雙方協議	b
E70C- GS(X)	E48C- GS(X)	70,000	480	未規	定	未規定		b

備註:

- a.為最小值
- b.除記號為C或M以外,遮護氣體種類可依買賣雙方協商而定

表四 銲接金屬擴散氫含量限制

銲線	規格	擴散氫記號	銲接金屬擴散氫含量	
A5.18	A5.18M	(選擇性追加)	平均值 ml/100g	
		H16	16.0	
Α	LL	H8	8.0	
		H4	4.0	

S銲材規格

· A5.20M

AWS A5.20

碳鋼用氣體遮護電弧銲接(線材及棒材)規格及特性說明(AWS A5.18 / A5.18M)

ER70S-2 [ER48S-2]

- ●主要用於全淨鋼、半淨鋼及淨面鋼的單道銲接,有時亦可使用在多道 銲接。因線材中含有AI、Ti及Zr等脱氧元素,可忍受母材表面些許的 銹皮及污物。
- GTAW的打底銲接亦廣被使用,適銲母材規格為ASTM A36、A285-C、A515-55及A516-70等。

ER70S-3 [ER48S-3]

● 適用於單道及多道銲接,適銲母材規格與ER70S-2相似,廣泛用於GMAW。

ER70S-4 [ER48S-4]

● 線材於銲接中的脱氧效果較ER70S-3佳, 適銲母材規格與ER70S-2 相似, 銲接金屬不要求衝擊試驗。

ER70S-6 [ER48S-6]

- 適用於單道及多道銲接,能使用較高的適銲電流,可忍受母材表面些 許的銹皮及污物。
- 遮護氣體以CO。為主,亦可使用混合氣(Ar+O。或Ar+CO。)。
- 摘銲母材規格與ER70S-2相似。

ER70S-7 [ER48S-7]

- 適用於單道及多道銲接, 銲接速度較ER 70S-3高。
- 使用較高的適銲電流,鐵水潤濕效果較其他線材佳。
- ●遮護氣體以CO₂為主,亦可使用混合氣(Ar+O₂或Ar+CO₂)。
- 適銲母材規格與ER70S-2相似。

ER70S-G [ER48S-G] 及E70C-G [E48C-G]

- ER70S-G僅規定銲接金屬的抗拉強度,其它性質類如線材化學成份、銲接金屬的衝擊韌性以及作業性等由買賣雙方議定。
- E70C-G為合成型或包金屬粉型銲線,僅規定銲接金屬的抗拉強度, 其它性質類如線材化學成份、銲接金屬的衝擊韌性以及作業性等由買 賣雙方議定。

E70C-3 [E48C-3]及E70C-6 [E48C-6]

- ●為合成型或包金屬粉型銲線(composite stranded or metal cored)。外層為金屬皮材,內部填充有金屬粉末及少量合金。
- 適用於單道及多道銲接,可產生類似噴灑狀電弧,銲道美觀。
- E70C-3C使用CO₂為遮護氣體; E70C-3M使用75~80%Ar+CO₂為 遮護氣體,低温衝擊温度要求為-20℃。
- E70C-6C使用CO₂為遮護氣體; E70C-6M使用75~80%Ar+CO₂為 遮護氣體,低温衝擊温度要求為-30℃。

AWS A5.20 / A5.20M*: 2005 碳鋼包藥銲線規格

Specification for carbon Steel Electrodes for Flux Cored Arc Welding

分類記號(強制性)

銲線記號

銲接金屬(全銲道)最低抗拉強度記號;A5.20單位為ksi;A5.20M單位為MPa(見表一)

- 適用銲接姿勢記號。分為0或1

0表示適用於平及水平角銲;1表示適用於全姿勢

- 包藥銲線記號

· 使用特性記號如電流極性及一般操作特性;記號自 1至14及G或GS(見表二)

遮護氣體種類記號;C表示100%CO₂氣體;M 表示75~80%氬氣+25~20%CO₂氣體;無記號 表示無氣遮護式(自護式)

EXXI-XX-JX HX 分類記號(非強制性)

□ 銲接金屬擴散氫試驗記號。(見表三)

一記號D或Q,選擇性檢驗機械性能要求記號(使用低入熱量/冷卻速度快或高入熱量/冷卻速 度慢,見表四及表五)

J記號表特別要求低温衝擊韌性 (≧27J於-40℃)

*A5.20/A5.20M分别使用英制與公製標稱單位,請參見A5.1/A5.1M説明

表一 銲接金屬(全銲道)抗拉試驗要求

金早級	 規格	抗拉	強度	降伏	強度	延伸率	衝擊值
A5.20	A5.20M	ksi	MPa	ksi	MPa	%	J/°C
E7XT-1C,-1M	E49XT-1C,-1M	70~95	490~670	≧58	≧390	≧22	27/-20
E7XT-2C,-2M	E49XT-2C,-2M	≧70	≧490	未規定	未規定	未規定	未規定
E7XT-3	E49XT-3	≧70	≧490	未規定	未規定	未規定	未規定
E7XT-4	E49XT-4	70~95	490~670	≧58	≧390	≧22	未規定
E7XT-5C,-5M	E49XT-5C,-5M	70~95	490~670	≧58	≧390	≧22	27/-30
E7XT-6	E49XT-6	70~95	490~670	≧58	≧390	≧22	27/-30
E7XT-7	E49XT-7	70~95	490~670	≧58	≧390	≧22	未規定
E7XT-8	E49XT-8	70~95	490~670	≧58	≧390	≧22	27/-30

AWS銲材規格

		銲刹	泉規格	抗拉	強度	降付	強度	延伸率	衝擊值
	A5.2	20	A5.20M	ksi	MPa	ksi	MPa	%	J/°C
	E7XT-9	C,-9M	E49XT-9C,-9M	70~95	490~670	≧58	≧390	≧22	27/-30
	E7XT	-10	E49XT-10	≧70	≧490	未規定	未規定	未規定	未規定
	E7X1	-11	E49XT-11	70~95	490~670	≧58	≧390	≧20	未規定
Е	7XT-12	C, -12M	E49XT-12C, -12N	<i>1</i> 70∼90	490~620	≧58	≧390	≧22	27/-30
	E6XT	-13	E43XT-13	≧60	≧430	未規定	未規定	未規定	未規定
	E7XT	-13	E49XT-13	≧70	≧490	未規定	未規定	未規定	未規定
	E7XT	-14	E49XT-14	≧70	≧490	未規定	未規定	未規定	未規定
	E6X	Γ-G	E43XT-G	60~80	430~600	≧48	≧330	≧22	未規定
	E7X	Γ-G	E49XT-G	70~95	490~670	≧58	≧390	≧22	未規定
	E6XT	-GS	E43XT-GS	≧60	≧430	未規定	未規定	未規定	未規定
	E7XT	-GS	E49XT-GS	≧70	≧490	未規定	未規定	未規定	未規定
			表	二 使用特	寺性要求				
	(市 田 / 								胃浴式多

使用特	銲線	規格	銲接姿勢	遮護氣體	雷流極性	單道或多
性記號	A5.20	A5.20M		過暖米順	电测恒	道銲接
	E70T-1C	E490T-1C	H,F	CO_2	DC (+)	多
1	E70T-1M	E490T-1M	H,F	75~80Ar/CO ₂	DC (+)	多
ı	E71T-1C	E491T-1C	H,F,VU,OH	CO ₂	DC (+)	多
	E71T-1M	E491T-1M	H,F,VU,OH	75~80Ar/CO ₂	DC (+)	多
	E70T-2C	E490T-2C	H,F	CO ₂	DC (+)	里
2	E70T-2M	E490T-2M	H,F	75~80Ar/CO ₂	DC (+)	單
	E71T-2C	E491T-2C	H,F,VU,OH	CO ₂	DC (+)	單
	E71T-2M	E491T-2M	H,F,VU,OH	75~80Ar/CO ₂	DC (+)	單
3	E70T-3	E490T-3	H,F	無	DC (+)	里
4	E70T-4	E490T-4	H,F	無	DC (+)	多
	E70T-5C	E490T-5C	H,F	CO ₂	DC (+)	多
5	E70T-5M	E490T-5M	H,F	75~80Ar/CO ₂	DC (+)	多
5	E71T-5C	E491T-5C	H,F,VU,OH	CO ₂	DC (+) 或	多
	E71T-5M	E491T-5M	H,F,VU,OH	75~80Ar/CO ₂	DC (-)	多
6	E70T-6	E490T-6	H,F	無	DC (+)	多
7	E70T-7	E490T-7	H,F	無	DC (-)	多
/	E71T-7	E491T-7	H,F,VU,OH	無	DC (-)	多
8	E70T-8	E490T-8	H,F	無	DC (-)	多
0	E71T-8	E491T-8	H,F,VU,OH	無	DC (-)	多
	E70T-9C	E490T-9C	H,F	CO ₂	DC (+)	多
9	E70T-9M	E490T-9M	H,F	75~80Ar/CO ₂	DC (+)	多
9	E71T-9C	E491T-9C	H,F,VU,OH	CO ₂	DC (+)	多
	E71T-9M	E491T-9M	H,F,VU,OH	75~80Ar/CO ₂	DC (+)	多

使用特	銲線	規格	△□+☆ □ ☆ ★★	· 古· 芸 仁	表法标业	單道或多
性記號	A5.20	A5.20M	銲接姿勢	遮護氣體	電流極性	道銲接
10	E70T-10	E490T-10	H,F	無	DC (-)	單
11	E70T-11	E490T-11	H,F	無	DC (-)	多
11	E71T-11	E491T-11	H,F,VU,OH	無	DC (-)	多
	E70T-12C	E490T-12C	H,F	CO ₂	DC (+)	多
12	E70T-12M	E490T-12M	H,F	75~80Ar/CO ₂	DC (+)	多
	E71T-12C	E491T-12C	H,F,VU,OH	CO ₂	DC (+)	多
	E71T-12M	E491T-12M	H,F,VU,OH	75~80Ar/CO ₂	DC (+)	多
13	E61T-13	E431T-13	H,F,VU,OH	無	DC (-)	單
13	E71T-13	E491T-13	H,F,VU,OH	無	DC (-)	單
14	E71T-14	E491T-14	H,F,VU,OH	無	DC (-)	單
	E60T-G, E70T-G	E430T-G, E490T-G	H,F	未規定	未規定	多
G	E61T-G, E71T-G	E431T-G, E491T-G	H,F,VD或 VU,OH	未規定	未規定	多
G	E60T-GS, E70T-GS	E430T-GS, E490T-GS	H,F	未規定	未規定	單
	E61T-GS, E71T-GS	E431T-GS, E491T-GS	H,F,VD或 VU,OH	未規定	未規定	單

表三 銲接金屬擴散氫含量限制

擴散氫記號 (選擇性追加)	銲接金屬擴散氫含量平均值 ml/100g
H16	16.0
H8	8.0
H4	4.0

表四 銲接程序要求D及Q記號區分

記號	入熱量程序 (冷卻速度快慢)	預熱溫度 ℃	道間溫度℃	任一道入熱量 要求	平均每道入熱量 要求			
				銲線線徑2.4mm以下				
	低入熱量 (冷卻速度快)	20±15℃	90±15℃	≦1.3 KJ/mm	1.2+0.1,-0.2KJ/mm			
D		20 1 13 0	90 - 13 0	銲線線徑2.4mm以上				
				≦1.7 KJ/mm	1.6+0.1,-0.2KJ/mm			
	高入熱量 (冷卻速度慢)	150± 15℃	260± 25℃	≧3.0 KJ/mm	3.1+0.2,-0.1KJ/mm			
0	低入熱量(冷卻速度快)	20±15℃	≦65 ℃	≦1.3 KJ/mm	1.2+0.1,-0.2KJ/mm			
Q	高入熱量 (冷卻速度慢)	150± 15℃	150± 15℃	≧2.4 KJ/mm	2.8+0.2,-0.1KJ/mm			

W

S

表五 機械性質要求D及Q記號區分

記號	抗拉試驗	衝擊性能		
	降伏強度≧400MPa	>541 (100%)		
D	抗拉強度≧490MPa	≧54J(+20℃) (註)		
	延伸率≧22%	(RL /		
	降伏強度400~550 Mpa (高入熱量,冷卻速度慢)			
Q	降伏強度≥600 Mpa (低入熱量,冷卻速度快)	≧27J (-30°C)		
	延伸率≧22%			

表六 全熔填銲接金屬化學成份要求

銲線	規格				1	化學成	说份wt	% (a	1)			
A5.20	A5.20M	С	Si	Mn	Р	S	Ni	Cr	Мо	V	Al	Cu
E7XT-1C,-1M	E49XT-1C, -1M											
E7XT-5C,-5M	E49XT-5C, -5M	0.12	0.90	1.75	0.03	03 0.03	0.03 0.50	0.20	0.30	0.08	_	0.35
E7XT-9C,-9M	E49XT-9C, -9M											
E7XT-4	E49XT-4											
E7XT-6	E49XT-6			0 1.75	0.03	0.03	0.50	0.20	0.30	0.08	1.8	
E7XT-7	E49XT-7	0.30	0.60									0.35
E7XT-8	E49XT-8											
E7XT-11	E49XT-11											
E7XT-12C, -12M	E49XT-12C, -12M	0.12	0.90	1.60	0.03	0.03	0.50	0.20	0.30	0.08	_	0.35
EXX	XT-G	b	0.90	1.75	0.03	0.03	0.50	0.20	0.30	0.08	1.8	0.35
E6XT-13	E43XT-13											
E7XT-2C,-2M	E49XT-2C, -2M											
E7XT-3	E49XT-3					j	未規定	2				
E7XT-10	E49XT-10											
E7XT-13	E49XT-13											
E7XT-14	E49XT-14											
EXX	T-GS											

備註

a:單一值表最大值。

b:氣體遮護包藥銲線之碳含量≤0.18%,無氣遮護銲線之碳含量≤0.30%。

碳鋼用包藥銲線規格特性說明(AWS A5.20/A5.20M)

EXXT-1C [EXXT-1M]

- 為軟鋼及490N/mm²級高張力鋼用之氣體遮護包藥銲線,熔渣屬氧化 鈦系,熔填效率遠高於被覆銲條,適用於單道及多道銲接。使用DC (+)電源,線徑>1.6mm建議只用於平銲及平角銲;線徑≦1.6mm 可做全姿勢銲接。
- ■電弧極為穩定,因熔滴細小,電弧類似噴灑移行,銲濺物少,銲道外 觀平坦略凸,銲渣薄,容易剝除。
- ●EXXT-1 C 規格 選定 C O 2為 遮 護 氣 體; EXXT-1 M 規格 選定 75%~80%Ar+CO2之混合氣為遮護氣體。當使用Ar+CO2混合氣體 時,銲線中Si、Mn和其他微量金屬元素的氧化量及燒損量會隨Ar比例的增加而降低,間接提高銲接金屬的降伏強度及抗拉強度,亦提高全姿勢銲接之作業性。

EXXT-2C [EXXT-2M]

- ●此規格以EXXT-1C〔EXXT-1M〕為基礎而設計。線材中的Si、Mn 含量較高,可用於銲接未淨鋼或氧化程度較嚴重的母材。
- 適用平銲以及平角銲之單道銲接。
- ●由於Mn含量較高,因此銲接金屬抗拉強度較EXXT-1C〔EXXT-1M〕 來的高。至於電弧特性及熔填效率均與EXXT-1C〔EXXT-1M〕規格 相似。

EXXT-3

- ●此規格屬無氣遮護式(自護式)、DC+電流專用、具有噴灑移行的電 弧特性。此渣系統專為快速銲接而設計。適於平銲,平角銲及立銲下 進(傾斜角度<20°)等單道銲接,立銲下進只適用在薄板,銲接作 業時,母材冷卻速度太快時會有劣化之顧慮,因此,母材厚度超過下 述範圍時,不建議使用:
 - (1) T接或搭接,母材厚度>5mm以上時。
 - (2) 對接、端緣接頭及角緣接頭,母材厚度>6mm以上時。

EXXT-4

●此規格屬無氣遮護式(自護式)、DC+電流專用、具有球滴移行的電 弧特性,適用於單道或多道銲接。屬鹼性渣系,可提供高熔填效率。 因含硫量低,可提升銲接金屬的抗熱裂效果。電弧的滲透力較淺,可 銲接組裝精度不良且銲縫間隙較大的工件。

EXXT-5C (EXXT-5M)

●主要設計適用於平銲或平角銲的單道或多道銲接、電流極性以DC+(DCEP)為主,若改成DC-(DCEN)則可做全姿勢銲接。電弧特性

AWS A5.20

W

S

為球滴移行、銲道外觀微凸,銲渣薄,可能不會完全覆蓋整個銲道。

- 銲劑分類屬鹼性渣系, 銲接金屬具有較一般金紅石渣系更優良之抗冷、熱裂性能以及較佳低温衝擊韌性。但作業性較金紅石渣系稍差。
- ●EXXT-5C規格選定CO₂為遮護氣體;EXXT-5M規格選定75%~80%Ar+CO₂之混合氣為遮護氣體。當使用Ar+CO₂混合氣時,能有效降低銲濺物,銲線中Si、Mn和其他微量金屬元素的氧化量及燒損量會隨Ar比例的增加而降低,間接提高銲接金屬的降伏強度、抗拉強度以及可能改變衝擊韌性。

EXXT-6

●此規格屬無氣遮護式(自護式)、DC+電流專用、具有噴灑移行的電弧特性。銲接金屬的低温衝擊韌性佳,電弧滲透力強,適用於全滲透 銲接。即使在槽深較深的根部銲道,脱渣性仍佳。主要適用於平銲及 水平角銲的單道或多道銲接。

EXXT-7

●此規格屬無氣遮護式(自護式)、DC-電流專用、電弧特性介於小球 滴與噴灑移行之間,適用於單道或多道銲接。較大線徑(≥2.0mm) 銲線適合高效率之平銲或平角銲;小線徑(<2.0mm)則適於全姿勢 銲接,銲接金屬含硫量很低,抗熱裂性佳。

EXXT-8

●此規格屬無氣遮護式(自護式)、DC-電流專用、電弧特性介於小球滴 與噴灑移行之間,適用於全姿勢單道或多道銲接。銲接金屬的低温衝 擊韌性及抗裂性佳。

EXXT-9C (EXXT-9M)

- ●EXXT-9C規格選定CO₂為遮護氣體;EXXT-9M規格選定75%~80%Ar+CO₂之混合氣為遮護氣體。當使用Ar+CO₂混合氣時,能改善作業性,在銲件的銲接姿勢變化複雜時效果尤其明顯。銲線中Si、Mn和其他微量金屬元素的氧化量及燒損量會隨Ar比例的增加而降低,間接提高銲接金屬的降伏強度、抗拉強度以及可能改變衝擊韌性。
- ●EXXT-9C [EXXT-9M] 均可適用於單道或多道銲接。線徑>1.6mm 建議只用於平銲及平角銲;線徑≤1.6mm可做全姿勢銲接。電弧特 性、作業性及熔填效率均與EXXT-1C [EXXT-1M] 相似,但銲接金 屬之低温衝擊韌性較佳。
- 銲道品質要求較高,銲前清潔動作要確實。

EXXT-10

●此規格屬無氣遮護式(自護式)、DC-電流專用、具有小球滴移行的電弧特性。適用於任何厚度之平銲、水平角銲及立銲(傾斜角度<20°)的單道高速銲接。

EXXT-11

●此規格屬無氣遮護式(自護式)、DC-電流專用、具有平順之噴灑移 行電弧特性。適用於單道或多道之全姿勢銲接。通常不建議使用在厚度>19mm之工件。

EXXT-12C (EXXT-12M)

●此規格銲線之電弧特性、作業性及熔填效率均與EXXT-1C〔EXXT-1M〕相似。但改善銲接金屬的低温衝擊韌性,且能符合ASME Sec. IX 銲接金屬成份分析編號A-No.1中Mn的低限規定,同時可能伴隨著抗拉強度和硬度的降低。銲接程序會影響銲接金屬的機械性。使用者需確實確認銲接金屬的最高容許硬度。

EXXT-13

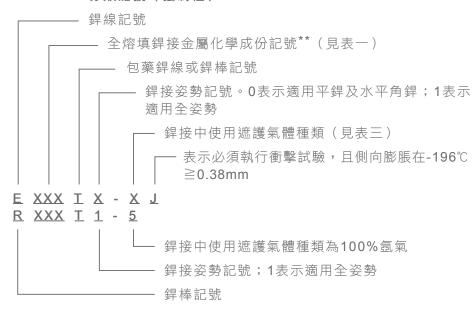
●此規格屬無氣遮護式(自護式)、DC-電流專用、銲接時以短路移行電弧為主。特別適用於任何厚度管件之全姿勢圓周銲接,但只建議用於第一道銲道,後續銲道不適用。

EXXT-14

- ●此規格屬無氣遮護式(自護式)、DC-電流專用、具有平順之噴灑移 行電弧特性,主要用於全姿勢單道及高速銲接。
- ●適用於鍍鋅、鍍鋁及其他表面防銹塗覆,且厚度≦5mm之薄鋼板。
- 銲接作業時,母材冷卻速度太快時會有劣化之顧慮,因此,母材厚度 超過下述範圍時,不建議使用:
 - (1) T接或搭接,母材厚度>5mm以上時。
 - (2) 對接、端緣接頭及角緣接頭,母材厚度>6mm以上時。

EXXT-G

●主要用於多道銲接,作業性並未詳細規範。除規定銲接金屬的化學成份(有遮護氣體時,碳含量≤0.18;無遮護氣體時,碳含量≤0.30)及抗拉強度外,其他部分之要求由買賣雙方議定。


EXXT-GS

●主要用於單道銲接,作業性並未詳細規範。除規定銲接金屬的抗拉強 度外,其他部分之要求由買賣雙方議定。 S

AWS A5.22 / A5.22M*:2010不銹鋼包藥/包金屬粉銲線及銲棒規格

Specification for Stainless Steel Flux Cored and Metal Cored Welding Electrodes and Rods.

分類記號(強制性)

- *A5.20/A5.20M分別使用英制與公製標稱單位,請參見A5.1/A5.1M説明
- **全熔填銲接金屬化學成份記號相對應之機械性質要求(見表二)

EC XXX

***合成型銲線化學成份部份摘錄(略)

表一 全熔填銲接金屬化學成份記號(摘錄)

	衣 —	王况	计具址打	女並			記號(間球ノ			
化學成份記號					化	學成份wt	% (a)				
	С	Si	Mn	Р	S	Ni	Cr	Mo	Nb+Ta	N	Cu
E307TX-X	0.13	1.0	3.30~4.75	0.04	0.03	9.0~10.5	18.0~20.5	0.5~1.5	_	_	0.75
E308TX-X	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	_	_	0.75
E308LTX-X	0.04	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	_	_	0.75
E308HTX-X	0.04~0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	_	_	0.75
E308MoTX-X	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	2.0~3.0	_	_	0.75
E308LMoTX-X	0.04	1.0	0.5~2.5	0.04	0.03	9.0~12.0	18.0~21.0	2.0~3.0	_	_	0.75
E309TX-X	0.10	1.0	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	_	_	0.75
E309HTX-X	0.04~0.10	1.0	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	_	_	0.75
E309LNbTX-X	0.04	1.0	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	0.7~1.00	_	0.75
E309LTX-X	0.04	1.0	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	_	_	0.75
E309MoTX-X	0.12	1.0	0.5~2.5	0.04	0.03	12.0~16.0	21.0~25.0	2.0~3.0	_	_	0.75
E309LMoTX-X	0.04	1.0	0.5~2.5	0.04	0.03	12.0~16.0	21.0~25.0	2.0~3.0	_	_	0.75
E309LNiMoTX-X	0.04	1.0	0.5~2.5	0.04	0.03	15.0~17.0	20.5~23.5	2.5~3.5	_	_	0.75
E310TX-X	0.20	1.0	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	_	_	0.75
E312TX-X	0.15	1.0	0.5~2.5	0.04	0.03	8.0~10.5	28.0~32.0	0.75	_	_	0.7
E316TX-X	0.08	1.0	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	_	_	0.7
E316HTX-X	0.04~0.08	1.0	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	_	_	0.7
E316LTX-X	0.04	1.0	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	_	_	0.7
E317LTX-X	0.04	1.0	0.5~2.5	0.04	0.03	12.0~14.0	18.0~21.0	3.0~4.0	_	_	0.75
E347TX-X	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	8×Cmin ~1.0max	_	0.75
E409TX-X ^b	0.10	1.0	0.80	0.04	0.03	0.60	10.5~13.5	0.75	_	_	0.75
E409NbTX-X	0.10	1.0	1.2	0.04	0.03	0.6	10.5~13.5	0.5	8×Cmin ~1.5max	_	0.5
E410TX-X	0.12	1.0	1.2	0.04	0.03	0.60	11.0~13.5	0.75	_	_	0.75
E410NiMoTX-X	0.06	1.0	1.0	0.04	0.03	4.0~5.0	11.0~12.5	0.40~ 0.70	_	_	0.75
E430TX-X	0.10	1.0	1.2	0.04	0.03	0.60	15.0~18.0	0.75	_	_	0.7
E430NbTX-X	0.10	1.0	1.2	0.04	0.03	0.6	15.0~18.0	0.5	0.5~1.5	_	0.5
E2209TX-X	0.04	1.0	0.5~2.0	0.04	0.03	7.5~10.0	21.0~24.0	2.5~4.0	_	0.08~ 0.20	0.7
E2553TX-X	0.04	0.75	0.5~1.5	0.04	0.03	8.5~10.5	24.0~27.0	2.9~3.9		0.10~ 0.25	1.5 ⁻ 2.5
E2594TX-X ^c	0.04	1.0	0.5~2.5	0.04	0.03	8.0~10.5	24.0~27.0	2.5~4.5		0.20~ 0.30	1.5
EGTX-X						未規定					
E307T0-3	0.13	1.0	3.30~4.75	0.04	0.03	9.0~10.5	19.5~22.0	0.5~1.5	_	_	0.75
E308T0-3	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	19.5~22.0	0.75	_	_	0.7
E308LT0-3	0.04	1.0	0.5~2.5	0.04	0.03	9.0~11.0	19.5~22.0	0.75	_	_	0.75
E308HT0-3	0.04~0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	19.5~22.0	0.75	_	_	0.75

// E83 -t/ /A = 7 0-5	化學成份 wt % ^(a)										
化學成份記號	С	Si	Mn	Р	S	Ni	Cr	Mo	Nb+Ta	N	Cu
E308MoT0-3	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	2.0~3.0	_	_	0.75
E308LMoT0-3	0.04	1.0	0.5~2.5	0.04	0.03	9.0~12.0	18.0~21.0	2.0~3.0	_	_	0.75
E308HMoT0-3	0.07~0.12	0.25~ 0.80	1.25~2.25	0.04	0.03	9.0~10.7	19.0~21.5	1.8~2.4	_	_	0.75
E309T0-3	0.10	1.0	0.5~2.5	0.04	0.03	12.0~14.0	23.0~25.5	0.75	_	_	0.75
E309LT0-X	0.04	1.0	0.5~2.5	0.04	0.03	12.0~14.0	23.0~25.5	0.75	_	_	0.75
E309LNbT0-3	0.04	1.0	0.5~2.5	0.04	0.03	12.0~14.0	23.0~25.5	0.75	0.70~1.00	_	0.75
E309MoT0-3	0.12	1.0	0.5~2.5	0.04	0.03	12.0~16.0	21.0~25.0	2.0~3.0	_	_	0.75
E309LMoT0-3	0.04	1.0	0.5~2.5	0.04	0.03	12.0~16.0	21.0~25.0	2.0~3.0	_	_	0.75
E310T0-3	0.20	1.0	1.0~2.5	0.03	0.03	20.0~22.5	25.0~28.0	0.75	_	_	0.75
E312T0-3	0.15	1.0	0.5~2.5	0.04	0.03	8.0~10.5	28.0~32.0	0.75	_	_	0.75
E316T0-3	0.08	1.0	0.5~2.5	0.04	0.03	11.0~14.0	18.0~20.5	2.0~3.0	_	_	0.75
E316LT0-3	0.04	1.0	0.5~2.5	0.04	0.03	11.0~14.0	18.0~20.5	2.0~3.0	_	_	0.75
E316LKT0-3	0.04	1.0	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	_	_	0.75
E317LT0-3	0.04	1.0	0.5~2.5	0.04	0.03	13.0~15.0	18.5~21.0	3.0~4.0	_	_	0.75
E347T0-3	0.08	1.0	0.5~2.5	0.04	0.03	9.0~11.0	19.0~21.5	0.75	8×Cmin ~1.0max	_	0.75
E409T0-3 ^b	0.10	1.0	0.80	0.04	0.03	0.60	10.5~13.5	0.75	_	_	0.75
E410T0-3	0.12	1.0	1.0	0.04	0.03	0.60	11.0~13.5	0.75	_	_	0.75
E410NiMoT0-3	0.06	1.0	1.0	0.04	0.03	4.0~5.0	11.0~12.5	0.40~ 0.70	_	_	0.75
E430T0-3	0.10	1.0	1.0	0.04	0.03	0.60	15.0~18.0	0.75	_	_	0.75
E2209T0-3	0.04	1.0	0.5~2.0	0.04	0.03	7.5~10.0	21.0~24.0	2.5~4.0		0.08~ 0.20	0.75
E2553T0-3	0.04	0.75	0.5~1.5	0.04	0.03	8.5~10.5	24.0~27.0	2.9~3.9	_	0.10~ 0.25	1.5~ 2.5
E2594T0-3 ^c	0.04	1.0	0.5~2.5	0.04	0.03	8.0~10.5	24.0~27.0	2.5~4.5	_	0.20~ 0.30	1.5
EGTX-3						未規定					
R308LT1-5	0.03	1.2	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	_	_	0.75
R309LT1-5	0.03	1.2	0.5~2.5	0.04	0.03	12.0~14.0	22.0~25.0	0.75	_	_	0.75
R316LT1-5	0.03	1.2	0.5~2.5	0.04	0.03	11.0~14.0	17.0~20.0	2.0~3.0	_	_	0.75
R347LT1-5	0.08	1.2	0.5~2.5	0.04	0.03	9.0~11.0	18.0~21.0	0.75	8× C min ~1.0max	_	0.75

備註:

- a.單一值為最大值
- b.其他成份 Ti = 10xCmin~1.5max
- c.其他成份 W = 1.0

表二 銲接金屬(全銲道)機械性質要求

化學成份記號 ^a	抗拉強	度,以上	延伸率,以上	銲後熱處理
化学风沉记弧"	ksi	MPa	%	軒 授
E307TX-X	85	590	30	不需要
E308TX-X	80	550	30	不需要
E308LTX-X	75	520	30	不需要
E308HTX-X	80	550	30	不需要
E308MoTX-X	80	550	30	不需要
E308LMoTX-X	75	520	30	不需要
E309TX-X	80	550	30	不需要
E309HTX-X	80	550	30	不需要
E309LNbTX-X	75	520	30	不需要
E309LTX-X	75	520	30	不需要
E309MoTX-X	80	550	25	不需要
E309LMoTX-X	75	520	25	不需要
E309LNiMoTX-X	75	520	25	不需要
E310TX-X	80	550	30	不需要
E312TX-X	95	660	22	不需要
E316TX-X	75	520	30	不需要
E316HTX-X	75	520	30	不需要
E316LTX-X	70	485	30	不需要
E317LTX-X	75	520	20	不需要
E347TX-X	75	520	30	不需要
E347HTX-X	75	520	30	不需要
E409TX-X	65	450	15	不需要
E409NbTX-X	65	450	15	d
E410TX-X	75	520	20	b
E410NiMoTX-X	110	760	15	С
E430TX-X	65	450	20	d
E430NbTX-X	65	450	13	d

S

A5.29M

AWS A5.29

Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding

分類記號(強制性)

銲線記號

銲接金屬(全銲道)最低抗拉強度記號;A5.29單位為ksi; A5.29M單位為MPa(見表一)

嫡用銲接姿勢記號,記號為**0**或**1**:**0**表示嫡用於平及水平 角銲;1表示適用於全姿勢

- 包藥銲線記號

使用特性記號如電流極性及一般操作特性;記號為 1,4,5,6,7,8,11及G。記號 "G"表示未特別規定(見表二)

全熔填銲接金屬化學成份要求記號。記號 "G" 表示未特別規定(見表三)

EXXIX-XX-JHX 分類記號(非強制性)

└ 銲接金屬擴散氫試驗記號。(見表四)

"J"表示特別要求低温衝擊韌性(至少≥27J於 10℃)(或參考表一)

- 遮護氣體種類記號: C表示100%CO; M表示 75~80% 氫氣 + 25~20% CO₃氣體;無記號表示 無氣遮護(自護式)

* A5.29/A5.29M分別使用英制及公制兩種標稱單位,請參見A5.1/ A5.1M説明

表二	銲接金屬	(全銲道)	機械	性質	要求	(續	,
	抗抗	毎度.以上		延	由率以	H	

化學成份記號 ^a	抗拉強	度,以上	延伸率,以上	銲後熱處理
16字:7% [刀百69元	ksi	MPa	%	亚十九人六八人处土土
E308HMoT0-3	80	550	30	不需要
E316LKT0-3	70	485	30	不需要
E2209TX-X	100	690	20	不需要
E2553TX-X	110	760	15	不需要
E2594TX-X	110	760	15	不需要
EGTX-X		未劫	見定	
R308LT1-5	75	520	30	不需要
R309LT1-5	75	520	30	不需要
R316LT1-5	70	485	30	不需要
R347T1-5	75	520	30	不需要

- a. 表中"T"後面的數字表示適用的銲接姿勢(!表全姿勢;0表示平、水平角銲); 橫線後的數字(-1、-3、-4、-5等)表示遮護氣體種類,詳如AWS分類規格説明。
- b. 加熱維持温度在730~760° 持温1小時(-0,+15分),每小時以110°以下的冷卻速 度,爐冷至315℃後空冷至室温。
- c. 加熱維持温度在595~620℃ 持温1小時(-0,+15分),然後空冷至室温。
- d. 加熱維持温度在760~790℃持温2小時(-0,+15分),每小時以55℃以下的冷卻速度 ,爐冷至595℃後空冷至室温。

表三 遮護氣體種類,電流極性及銲接方法

銲線規格	遮護氣體	電流極性	銲接方法
EXXXTX-1	CO ₂	DC (+)	FCAW
EXXXTX-3	自遮護	DC (+)	FCAW
EXXXTX-4	75~80%氫氣/其餘 CO ₂	DC (+)	FCAW
EXXXTX-5	100% 氬氣	DC (-)	GTAW
EXXXTX-G	未規定	未規定	FCAW
RXXXT1-G	未規定	未規定	GTAW
FCXXX	氬氣+≦2%O₂	DC (+)	GMAW
EUNN	100% 氬氣	DC (-)	GTAW

AWS銲材規格

	(全銲道)抗拉強度要求							
AWS	5規格	抗拉	強度	降伏	強度	延伸率	最低衝擊	
A5.29	A5.29M	ksi	MPa	ksi	MPa	%	值 J/℃	
E7XT5-A1C,A1M	E49XT5-A1C,A1M	70~90	490~620	≧58	≧400	≧20	27/-30	
E8XT1-A1C,A1M	E55XT1-A1C,A1M	80~100	550~690	≧68	≧470	≧19	未規定	
E8XT1-B1C,B1M	E55XT1-B1C,B1M	80~100	550~690	≧68	≧470	≧19	未規定	
-B1LC,B1LM	E55XT1-B1LC,B1LM	80~100	550~090	=00	=470	=19	小 况上	
E8XT1-B2C,B2M	E55XT1-B2C,B2M							
B2HC,B2HM,	B2HC,B2HM,							
B2LC,B2LM	B2LC,B2LM	80~100	550~690	≧68	≧470	≧19	未規定	
E8XT5-B2C,B2M	E55XT5-B2C,B2M							
B2LC,B2LM	B2LC,B2LM							
E9XT1-B3C,B3M	E62XT1-B3C,B3M							
ВЗНС,ВЗНМ,	ВЗНС,ВЗНМ,	00-110	620-760	>70	>540	>17	土坦宁	
B3LC,B3LM	B3LC,B3LM	90~110	620~760	≧78	≧540	≧17	未規定	
E9XT5-B3C,B3M	E62XT5-B3C,B3M							
E10XT1-B3C,B3M	E69XT1-B3C,B3M	100~120	690~830	≧88	≧610	≧16	未規定	
E8XT1-B6C,B6M	E55XT1-B6C,B6M							
B6LC,B6LM	B6LC,B6LM	00 100	EE0 600	>00	> 470	>40	++++	
E8XT5-B6C,B6M	E55XT5-B6C,B6M	80~100	550~690	≧68	≧470	≧19	未規定	
B6LC,B6LM	B6LC,B6LM							
E8XT1-B8C,B8M	E55XT1-B8C,B8M							
B8LC,B8LM	B8LC,B8LM	90~100	550~600	>60	>470	≧19	未規定	
E8XT5-B8C,B8M	E55XT5-B8C,B8M	80~100	550~690	≧68	≧470	= 19		
B8LC,B8LM	B8LC,B8LM							
E9XT1-B9C,B9M	E62XT1-B9C,B9M	90~120	620~830	≧78	≧540	≧16	未規定	
E6XT1-Ni1C,Ni1M	E43XT1-Ni1C,Ni1M	60~80	430~550	≧50	≧340	≧22	27/-30	
E7XT6-Ni1	E49XT6-Ni1	70~90	490~620	≧58	≧400	≧20	27/-30	
E7XT8-Ni1	E49XT8-Ni1	70~90	490~620	≧58	≧400	≧20	27/-30	
E8XT1-Ni1C,Ni1M	E55XT1-Ni1C,Ni1M	80~100	550~690	≧68	≧470	≧19	27/-30	
E8XT5-Ni1C,Ni1M	E55XT5-Ni1C,Ni1M	80~100	550~690	≧68	≧470	≧19	27/-50	
E7XT8-Ni2	E49XT8-Ni2	70~90	490~620	≧58	≧400	≧20	27/-30	
E8XT8-Ni2	E55XT8-Ni2	80~100	550~690	≧68	≧470	≧19	27/-30	
E8XT1-Ni2C,Ni2M	E55XT1-Ni2C,Ni2M	80~100	550~690	≧68	≧470	≧19	27/-40	
E8XT5-Ni2C,Ni2M	E55XT5-Ni2C,Ni2M	80~100	550~690	≧68	≧470	≧19	27/-60	
E9XT1-Ni2C,Ni2M	E62XT1-Ni2C,Ni2M	90~110	620~760	≧78	≧540	≧17	27/-40	
E8XT5-Ni3C,Ni3M	E55XT5-Ni3C,Ni3M	80~100	550~690	≧68	≧470	≧19	27/-70	
E9XT5-Ni3C,Ni3M	E62XT5-Ni3C,Ni3M	90~110	620~760	≧78	≧540	≧17	27/-70	
E8XT11-Ni3	E55XT11-Ni3	80~100	550~690	≧68	≧470	≧19	27/-20	
E9XT1-D1C,DIM	E62XT1-DIC, -DIM	90~110	620~760	≧78	≧540	≧17	27/-40	
E9XT5-D2C,D2M	E62XT5-D2C, D2M	90~110	620~760	≧78	≧540	≧17	27/-50	
E10XT5-D2C,D2M	E69XT5-D2C, D2M	100~120	690~830	≧88	≧610	≧16	27/-40	
E9XT1-D3C,D3M	E62XT1-D3C, D3M	90~110	620~760	≧78	≧540	≧17	27/-30	

表一 銲接金屬(全銲道)抗拉強度要求(續)

AWS	規格		強度		強度	延伸率	最低衝擊	
A5.29	A5.29M	ksi	MPa	ksi	MPa	%	值 J /℃	
E8XT5-K1C,K1M	E55XT5-K1C,K1M	80~100	550~690	≧68	≧470	≧19	27/-40	
E7XT7-K2	E49XT7-K2	70~90	490~620	≧58	≧400	≧20	27/-30	
E7XT4-K2	E49XT4-K2	70~90	490~620	≧58	≧400	≧20	27/-20	
E7XT8-K2	E49XT8-K2	70~90	490~620	≧58	≧400	≧20	27/-30	
E7XT11-K2	E49XT11-K2	70~90	490~620	≧58	≧400	≧20	27/0	
E8XT1-K2C,K2M	E55XT1-K2C,K2M	80~100	550~690	≧68	≧470	≧19	27/-30	
E8XT5-K2C,K2M	E55XT5-K2C,K2M	00~100	550~690	=00	5470	= 19	211-30	
E9XT1-K2C,K2M	E62XT1-K2C,K2M	90~110	620~760	≧78	≧540	≧17	27/-20	
E9XT5-K2C,K2M	E62XT5-K2C,K2M	90~110	620~760	≧78	≧540	≧17	27/-50	
E10XT1-K3C,K3M	E69XT1-K3C,K3M	100~120	690~830	≧88	≧610	≧16	27/-20	
E10XT5-K3C,K3M	E69XT5-K3C,K3M	100~120	690~830	≧88	≧610	≧16	27/-50	
E11XT1-K3C,K3M	E76XT1-K3C,K3M	110~130	760~900	≧98	≧680	≧15	27/-20	
E11XT5-K3C,K3M	E76XT5-K3C,K3M	110~130	760~900	≧98	≧680	≧15	27/-50	
E11XT1-K4C,K4M	E76XT1-K4C,K4M	110~130	760~900	≧98	≧680	≧15	27/-20	
E11XT5-K4C,K4M	E76XT5-K4C,K4M	110~130	760~900	≧98	≧680	≧15	27/-50	
E12XT5-K4C,K4M	E83XT5-K4C,K4M	120~140	830~970	≧108	≧745	≧14	27/-50	
E12XT1-K5C,K5M	E83XT1-K5C,K5M	120~140	830~970	≧108	≧745	≧14	未規定	
E7XT5-K6C,K6M	E49XT5-K6C,K6M	70~90	490~620	≧58	≧400	≧20	27/-60	
E6XT8-K6	E43XT8-K6	60~80	430~550	≧50	≧340	≧22	27/-30	
E7XT8-K6	E49XT8-K6	70~90	490~620	≧58	≧400	≧20	27/-30	
E10XT1-K7C,K7M	E69XT1-K7C,K7M	100~120	690~830	≧88	≧610	≧16	27/-50	
E9XT8-K8	E62XT8-K8	90~110	620~760	≧78	≧540	≧17	27/-30	
E10XT1-K9C,K9M	E69XT1-K9C,K9M	100~120	690~830	82~97	560~670	≧18	47/-50	
E8XT1-W2C,W2M	E55XT1-W2C,W2M	80~100	550~690	≧68	≧470	≧19	27/-30	
EXXTX-G,-GC,-GM	EXXTX-G,-GC,-GM			依買賣雙	方協議			
EXXTG-X	E8XTG-X	依買賣雙方協議						
EXXTG-G,	EXXTG-G,		依買賣雙方協議					

表二 使用特性要求(摘錄)

	农— 使用特性安水(摘鉢)											
使用特性記號	AWS規格	銲接姿勢	遮護氣體	電流極性	單道或多道銲接							
	EX0T1-XC		CO ₂	DC (I)								
1	EX0T1-XM	H,F	75~80Ar/CO ₂	DC (+)								
ı	EX1T1-XC	H,F,VU,OH	CO ₂	DC (+)								
	EX1T1-XM	H,F,VU,OH	75~80Ar/CO ₂	DC (+)								
4	EX0T4-X	H,F	無	DC (+)								
	EX0T5-XC	H,F	CO ₂	DC (+)								
	EX0T5-XM	П,Г	75~80Ar/CO ₂	DC (T)								
5	EX1T5-XC		CO ₂	DC (+) 或								
	LX113-XC	H,F,VU,OH	CO ₂	DC (-)								
	EX1T5-XM		75~80Ar/CO ₂	DC (-)								
6	EX0T6-X	H,F	無	DC (+)								
7	EX0T7-X	H,F	無	DC (-)	兩者							
,	EX1T7-X	H,F,VU,OH	////	DC ()								
8	EX0T8-X	H,F	無	DC (-)	擇一							
0	EX1T8-X	H,F,VU,OH	////	DC ()	使用							
11	EX0T11-X	H,F	無	DC (-)								
- 11	EX1T11-X	H,F,VU,OH	***	DC ()								
	EX0TX-G		無									
	EX0TX-GC		CO ₂	依規定								
	EX0TX-GM	H,F	75~80Ar/CO ₂									
	EX0TG-X		未規定	未規定								
G	EX0TG-G		未規定	未規定								
G	EX1TX-G		無									
	EX1TX-GC	H,F,VD或	CO ₂	依規定								
	EX1TX-GM	VU,OH	75~80Ar/CO ₂									
	EX1TG-X	VU,UH	未規定	未規定								
	EX1TG-G		未規定	未規定								

表三 全熔填銲接金屬化學成份要求(摘錄)

=70+	衣二 主俗 填 釺 按 並 屬 化 字											
記號	С	Si	Mn	Р	S	Ni	Cr	Mo	V	Al	Cu	其他
						鉬鋼						
A1	0.12	0.80	1.25	0.030	0.030	_	_	0.40~0.65	_	_	_	_
鉻鉬鋼												
B1	0.05~0.12	0.80	1.25	0.030	0.030	_	0.40~0.65	0.40~0.65	_	-	_	_
B1L	0.05	0.80	1.25	0.030	0.030	_	0.40~0.65	0.40~0.65	_	_	_	_
B2	0.05~0.12	0.80	1.25	0.030	0.030	_	1.00~1.50	0.40~0.65	_	_	_	
B2L	0.05	0.80	1.25	0.030	0.030	_	1.00~1.50	0.40~0.65	_	_	-	_
В2Н	0.10~0.15	0.80	1.25	0.030	0.030	_	1.00~1.50	0.40~0.65	_	_	-	_
ВЗ	0.05~0.12	0.80	1.25	0.030	0.030	_	2.00~2.50	0.90~1.20	_	_	_	_
B3L	0.05	0.80	1.25	0.030	0.030	_	2.00~2.50	0.90~1.20	_	_	_	_
взн	0.10~0.15	0.80	1.25	0.030	0.030	_	2.00~2.50	0.90~1.20	_	_	_	_
B6	0.05~0.12	1.00	1.25	0.040	0.030	0.40	4.0~6.0	0.40~0.65	_	_	0.50	_
B6L	0.05	1.00	1.25	0.040	0.030	0.40	4.0~6.0	0.40~0.65	_	_	0.50	_
В8	0.05~0.12	1.00	1.25	0.040	0.030	0.40	8.0~10.5	0.85~1.20	_	_	0.50	_
B8L	0.05	1.00	1.25	0.030	0.030	0.40	8.0~10.5	0.85~1.20	_	_	0.50	_
В9	0.08~0.13	0.50	1.20	0.020	0.015	0.80	8.0~10.5	0.85~1.20	0.15~ 0.30	0.04	0.25	b
鎳鋼												
Ni1	0.12	0.80	1.50	0.030	0.030	0.80~1.10	0.15	0.35	0.05	1.8 ^C	_	_
Ni2	0.12	0.80	1.50	0.030	0.030	1.75~2.75	_	_	_	1.8 ^C	_	_
Ni3	0.12	0.80	1.50	0.030	0.030	2.75~3.75	_	_	_	1.8 ^C	_	_
						錳鉬鋼						
D1	0.12	0.80	1.25~ 2.00	0.030	0.030	_	_	0.25~0.55	_	_	_	_
D2	0.15	0.80	1.65~ 2.25	0.030	0.030	_	_	0.25~0.55	_	_	_	_
D3	0.12	0.80	1.00~ 1.75	0.030	0.030	_	_	0.40~0.65	_	_	_	_
					-	其他低合金針	尚					
K1	0.15	0.80	0.80~ 1.40	0.030	0.030	0.80~1.10	0.15	0.20~0.65	0.05	_	_	_
K2	0.15	0.80	0.50~ 1.75	0.030	0.030	1.00~2.00	0.15	0.35	0.05	1.8 ^C	_	_
K3	0.15	0.80	0.75~ 2.25	0.030	0.030	1.25~2.60	0.15	0.25~0.65	0.05	_	_	_
K4	0.15	0.80	1.20~ 2.25	0.030	0.030	1.75~2.60	0.20~0.60	0.20~0.65	0.05	_	_	_
K5	0.10~0.25	0.80	0.60~ 1.60	0.030	0.030	0.75~2.00	0.20~0.70	0.15~0.55	0.05	_	_	_
K6	0.15	0.80	0.50~ 1.50	0.030	0.030	0.40~1.00	0.20	0.15	0.05	1.8 ^C	_	_

W

記號	化學成份 wt % ^(a)											
品上加证	С	Si	Mn	Р	S	Ni	Cr	Mo	V	Al	Cu	其他
K7	0.15	0.80	1.00~ 1.75	0.030	0.030	2.00~2.75	_	_	_	_	_	_
K8	0.15	0.40	1.00~ 2.00	0.030	0.030	0.50~1.50	0.20	0.20	0.05	1.8 ^c	_	_
K9	0.07	0.60	0.50~ 1.50	0.015	0.015	1.30~3.75	0.20	0.50	0.05	_	0.06	_
W2	0.12	0.35~ 0.80	0.50~ 1.30	0.030	0.030	0.40~0.80	0.45~0.70		_	_	0.30~ 0.75	_
G		1.00	0.50 ^d	0.030	0.030	0.50 ^d	0.30 ^d	0.20 ^d	0.10 ^d	1.8 ^C	_	_

備註:

- a. 單一值為最大值
- b. 其他成份 Nb:0.02~0.10; N:0.02~0.07
- c. 僅使用在無氣遮護銲線
- d. 最小值

表四 銲接金屬擴散氫含量限制

擴散氫記號(選擇性追加)	銲接金屬擴散氫含量平均值 ml/100g					
H16	16.0					
H8	8.0					
H4	4.0					

低合金鋼包藥銲線規格與特性說明(AWS A5.29 / A5.29M)

包藥銲線規格分類代號大致有1,4,5,6,7,8,11和G等(種類可能隨版本不 同而有所增減),除了G代號之作業性可能隨製造商不同而相異,其他 代號分別表示該族群分類中銲劑的主要成份及作業性,大致略述如下:

E XXT1-XC [E XXT1-XM]

- E XXT1-XC規格選定CO。為遮護氣體,但也可使用混合氣以改善作業 性,尤其當需做全姿勢銲接時。EXXT1-XM規格選定75%~80%Ar+ CO。之混合氣為遮護氣體。
- ●當使用Ar+CO₂混合氣體時, 銲線中Si、Mn和其他微量合金元素(例如Cr)的氧化量及燒損量會隨Ar比例的增加而降低,間接提高銲接 金屬的降伏強度、抗拉強度及影響衝擊韌性。
- ●EXXT1-XC與EXXT1-XM可推行單道或多道銲接。線徑>1.6mm建議 只用於平銲及平角銲,線徑≤1.6mm可做全姿勢銲接。
- 電弧特性為暗灑移行,銲濺物少,銲道微凸,渣量滴中可完整覆蓋銲 道。
- 銲劑分類屬氧化鈦系,具有高熔填效率。

E XXT4-X

● 此規格屬無氣遮護式(自護式)、DC+電流專用、具有球滴移行的電 弧 特性, 適用於單道或多道銲接。屬鹼性渣系, 可提供高熔填效率。 因含硫量低,可提升銲接金屬的抗熱裂性。電弧的滲透力較淺,可銲 接組裝精度不良目銲縫間隙較大的工件。

E XXT5-XC及E XXT5-XM

- ●EXXT5-XC規格選定CO₂為遮護氣體,也可使用混合氣以改善作業 性。EXXT5-XM規格選定75%~80%Ar+CO。混合氣為遮護氣體。
- ●若EXXT5-XC使用Ar+CO₂混合氣時,能有效降低銲濺物。銲線中 Si、Mn和其他微量合金元素的氧化量及燒損量會隨Ar比例的增加而 降低,間接提高銲接金屬的降伏強度、抗拉強度以及可能影響衝擊韌 性。
- 適用於平銲或平角銲的單道或多道銲接、電流極性以DC+(DCEP) 為主,若改成DC-(DCEN)則可做全姿勢銲接。電弧特性為球滴移 行、銲道外觀微凸,銲渣薄,可能不會完全覆蓋整個銲道。
- 銲劑分類屬鹼性渣系, 銲接金屬具有較一般金紅石渣系更優良之抗 冷、熱裂性能以及較佳低温衝擊韌性。但作業性較余紅石渣系稍差。

老師沒教的

銲線包粉的就叫包藥銲線嗎?

完全對: 説不對嗎? 錯在哪裡?

一般大家都把銲線內包了粉末的銲線稱做"包藥銲線",而很自然的把"包藥銲線"就當作是英文的 Flux Cored Wire。説這樣對嗎?不

要探討這個問題,首先要知道國外還有一種很普遍的銲線叫作metal cored wire,而這種銲線在 AWS 規範中是被歸類在一般人認為專屬於實心銲線的 A5.18 中。在 AWS 中 metal cored wire 又稱為composite metal cored wire,有時亦稱為 composite wire(合成型銲線)。但是這種銲線並非實心銲線,其構造和一般的包藥銲線可說完全一樣,最大的不同點就是裡面的粉末 "幾乎" 都是金屬粉末。而根據定義,金屬粉末是不能稱之為 flux 的。所以稱之為 metal cored wire。這種銲線通常要配合混合氣使用,其銲接特性融合了實心銲線與 flux cored wire 的特點,銲道外觀沒有銲渣覆蓋,如同實心銲線;但是因為內部充填了金屬粉末,所以電流密度高,銲接效率比實心銲線好,這點又像 flux cored wire。由於充填在內的都是金屬粉末不形成 銲渣,所以熔填率又近似於實心銲線,高於 flux cored wire。metal cored wire 由於沒有慣用的中文譯名,所以一般人並不注意其區別。但是畢竟裡面不是"藥",所以用"包藥銲線"來稱呼並不恰當。

要特別提醒大家:日本人在口語上也使用metal cored一詞,但是日本人所説的metal cored包含了添加多量鐵粉以改善熔填效率的包藥 銲線(類如E70T1等)以及幾乎只有金屬粉的合成型銲線,在溝通上要特別小心!

在外文裡面,另外有個名詞 tubular wire 用來稱呼 flux cored wire 與 metal cored wire。顧名思義,tubular wire 就是管狀銲線的意思,管你裡面是藥還是金屬,反正都是管狀的而不是實心的就通通叫做管狀銲線吧!

E XXT6-X

- ●此規格屬無氣遮護式(自護式)、DC+(DCEP)電流專用、電弧特件介於小球滴與噴灑移行之間。
- 銲接金屬的低温衝擊韌性佳,電弧滲透力強,適用於全滲透銲接。即 使在槽深較深的根部銲道,脱渣性仍佳。主要適用於平銲及水平角銲 的單道或多道銲接。

F XXT7-X

 ●此規格屬無氣遮護式(自護式)、DC-電流專用、電弧特性介於小球 滴與噴灑移行之間,適用於單道或多道銲接。較大線徑(≥2.0mm) 銲線適合高效率之平銲或平角銲;小線徑(<2.0mm)則適於全姿勢 銲接,銲接金屬含硫量很低,抗熱裂性佳。

E XXT8-X

●此規格屬無氣遮護式(自護式)、DC-電流專用、電弧特性介於小球 滴與噴灑移行之間,適用於全姿勢單道或多道銲接。銲接金屬的低温 衝擊韌性及抗裂性佳。

E XXT11-X

●此規格屬無氣遮護式(自護式)、DC-電流專用、具有平順之噴灑移 行電弧特性,適用於單道或多道之全姿勢銲接,通常不建議使用在厚度>19mm之工件。

EXXTX-G

●主要用於多道銲接,作業性並未詳細規範。銲接金屬的化學成份、遮護氣體種類或/及渣系分類等,由買賣雙方議定。

201

JIS銲材規格(摘錄)

前言

傳統上日本的銲材在鋼廠主導下,配合鋼材的發展,開發了許多具有日本特色的產品;許多產品在分類上也與台灣慣用的AWS系統不同。因此JIS在與其他銲材規範對照時,會面臨許多無法直接相容的情況。近年來隨著國際貿易的愈加興盛,國際規格的統合愈發顯得重要。向來堅持JIS獨特性的日本也不得不面對可能被孤立的風險,積極展開銲材規格國際化的活動。

為積極推動JIS與ISO規格整合的活動,自2008年開始,JIS陸續推出 許多銲材規格的新版本。更動幅度之大,為歷年來之最。配合新規格的 推出,原有的JIS認證也都需要重新試驗以符合新的規格。

本公司所有符合JIS的產品,皆已根據JIS的最新版本重新取得認證。目前JIS仍持續配合ISO標準對所有銲材規格進行修訂,因此本目錄所提供與JIS相關的訊息,雖然都是出版前的最新資料。使用者若需使用JIS規格時,務必確認最新版本,並以JIS所發行的規格票為依據。

索引

JIS Z3211:2008 軟鋼,高張力鋼及低温用鋼電銲條

JIS Z3312:2009 軟鋼,高張力鋼及低温用鋼MAG及MIG實心銲線

JIS Z3316:2001 軟鋼及低合金鋼用TIG銲棒及實心銲線 JIS Z3313:2009 軟鋼,高張力鋼及低温用鋼包藥銲線

JIS Z3214:1999 耐候鋼用電銲條

JIS Z3223: 2000 鉬鋼及鉻鉬鋼用電銲條

JIS Z3221: 2008 不銹鋼電銲條

JIS Z3321:2010 不銹鋼銲接用銲棒、銲線及鋼帶

JIS Z3323: 2007 不銹鋼包藥銲線 JIS Z3251: 2000 硬面銲接用電銲條

JIS Z3211: 2008 軟鋼,高張力鋼及低溫用鋼電銲條

- 規格號碼

- 電銲條記號

- 銲接金屬(全銲道)抗拉強度記號(見表一)

被覆劑種類記號(見表二)

- 全熔填銲接金屬之主要化學成份記號 (參見JIS規格)

無記號: 銲後原態 記號P: 需後熱處理

記號AP: 銲後原態或需後熱處理

衝擊能量記號

- 無記號: 依規定試驗温度,須達

27J以上或不要求衝擊試

驗

U記號:依規定試驗温度,須達

47J以上

JIS Z3211 E XX XX- XXX X U L- HX 追加區分記號

衝擊試驗温度記號

無記號:>-40℃; 記號L:≦-40℃

表一 銲接金屬(全銲道)抗拉強度記號 單位: MPa

記號	抗拉強度	記號	抗拉強度
43	430以上	62	620以上
49	490以上	69	690以上
55	550以上	76	760以上
57	570以上	78	780以上
57J*	570以上	78J*	780以上
59	590以上	83	830以上
59J*	590以上	_	_

*:57J、59J及78J適用於U記號

表二 被覆劑種類記號

=7 0-6	*#* 要 ₹ ⟨★ (A)	旧拉尔勒 (a)	爾茨極州 (b)
記號	被覆系統 (e)	焊接姿勢 (a)	電流極性 (b)
3	石灰氧化鈦系	全姿勢 (c)	AC或DC(±)
10	高纖維素系	全姿勢	DC(+)
11	高纖維素系	全姿勢	AC或DC(+)
12	高氧化鈦系	全姿勢 (c)	AC或DC(-)
16	高氧化鈦系	全姿勢 (c)	AC或DC(±)
14	鐵粉氧化鈦系	全姿勢 (c)	AC或DC(±)
15	低氫系	全姿勢 (c)	DC(+)
16	低氫系	全姿勢 (c)	AC或DC(+)
18	鐵粉低氫系	全姿勢 (c)	AC或DC(+)
19	鈦鐵礦系	全姿勢 (c)	AC或DC(±)
20	氧化鐵系	PA,PB	AC或DC(-)
24	鐵粉氧化鈦系	PA,PB	AC或DC(±)
27	鐵粉氧化鈦系	PA,PB	AC或DC(-)
28	鐵粉低氫系	PA,PB,PC	AC或DC(+)
40	特殊系	依製造	商規定
48	低氫系	全姿勢 (d)	AC或DC(+)

備註

a. 銲接姿勢説明:PA:平銲,PB:水平角銲,PC:横銲

b. AC:交流; DC+: 直流正電極; DC-: 直流負電極, DC±: 直流正及負電極

c. 立銲姿勢,PF(適用立銲上進)

d. 立銲姿勢,PG(適用立銲下進)

e. 被覆劑種類特性説明,見附表一

f. 全熔填銲接金屬化學成份, 見附表二

g. 銲接金屬(全銲道)機械性質,見附表三

表三 銲接金屬氫含量記號 單位: ml/100g銲接金屬

記號	氫含量
H5	5以下
H10	10以下
H15	15以下

JIS Z3211

JIS銲材規格

附表一 被覆劑種類特性說明

	CIA	200 1次 1支 月11至 大只 1寸 1工 6九 9万
記號	被覆劑系統	特徵
3	石灰氧化鈦系	被覆中含有氧化鈦(金紅石)及石灰,兼具13及16被覆 特性。
10	高纖維素系	被覆中含有高量有機物(特別是纖維素),電弧集中性優良,適用立銲下進姿勢。此被覆使用鈉作為電弧穩定劑, 通常為直流正電極專用。
11	高纖維素系	被覆中含有高量有機物(特別是纖維素),電弧集中性優良,適用立銲下進姿勢。此被覆使用鉀作為電弧穩定劑, 交直流均適用。
12	高氧化鈦系	被覆中含有高量氧化鈦(金紅石)。電弧非常柔和,金屬 熔滴很容易跨越過組裝精度不良或間隙太大的銲件。
13	高氧化鈦系	被覆中含有氧化鈦(金紅石)。 此被覆使用鉀作為電弧穩定劑,電弧非常安定,與12被覆系統類似,低電流時電弧非常柔和,適合薄板銲接。
14	鐵粉氧化鈦系	被覆除添加部份鐵粉之外,與12及13被覆系統類似。鐵 粉的添加可提升熔填效率,適用全姿勢銲接。
15	低氫系	被覆中含有高量碳酸鹽及螢石,屬高鹼度的被覆系統,此 被覆使用鈉作為電弧穩定劑,通常為直流專用。熔填金屬 擴散氫含量低並具有優良機械性能。
16	低氫系	被覆中含有高量碳酸鹽及螢石,屬高鹼度的被覆系統,此 被覆使用鉀作為電弧穩定劑,可適用直流及交流。熔填金 屬擴散氫含量低並具有優良機械性能。
18	鐵粉低氫系	除被覆中添加部份鐵粉,並增加被覆厚度外,與16被覆系統類似。 鐵粉的添加可提升熔填效率。
19	鈦鐵礦系	被覆中含有鈦鐵礦(FeO+TiO2),雖屬非低氫系銲條, 但銲接金屬的機械性能仍然優良。
20	氧化鐵系	被覆中含有多量氧化鐵,熔渣的流動性佳、鐵水濕潤效果 優良。多用於平銲及平角銲的高熔填效率及重力式銲接。
24	鐵粉氧化鈦系	被覆中含有高量鐵粉,並增加被覆厚度外,與 14 被覆系統類似。多用於平銲及平角銲的高熔填效率及重力式銲接。
27	鐵粉氧化鐵系	被覆中含有高量鐵粉及氧化鐵,並增加被覆厚度外,與20 被覆系統類似。多用於平銲及平角銲的高熔填效率及重力 式銲接。
28	鐵粉低氫系	被覆中含有高量鐵粉,並增加被覆厚度外,與18被覆系統類似。多用於平銲及平角銲的高熔填效率及重力式銲接。
40	特殊系	依買賣雙方協調而定。
48	低氫系	除主要設計專用於立銲下進銲接姿勢,被覆系統與16及 18類似。

附表二 全熔填銲接金屬化學成份(摘錄)(Z3211:2008)

電銲條	種類			3	≧熔填銲接	金屬化學	成份 Wt %	%		
記號	有無後熱 處理記號	С	Si	Mn	Р	S	Ni	Cr	Мо	V
E4303 E4310 E4311										
E4312 E4313 E4316	無,P,AP	≦0.20	≦1.00	≦1.20	_	_	≦0.30	≦0.20	≦0.30	≦0.08
E4318	無,P,AP	≦0.03	≦0.40	≦0.60	≦0.025	≦0.015	≦0.30	≦0.20	≦0.30	≦0.08
E4319										
E4320 E4324	無,P,AP	≦0.20	≦1.00	≦1.20	_	_	≦0.30	≦0.20	≦0.30	≦0.08
E4327										
E4340	無,P,AP		_	_	_	_	_		_	
E4903	無,P,AP	≦0.15	≦0.90	≦1.25	_	_	≦0.30	≦0.20	≦0.30	≦0.08
E4910 E4911	無,P,AP	≦0.20	≦0.90	≦1.25	_	_	≦0.30	≦0.20	≦0.30	≦0.08
E4912 E4913	無,P,AP	≦0.20	≦ 1.00	≦1.20	≦ 0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4914	無,P,AP	≦0.15	≦0.90	≦1.25	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4915	無,P,AP	≦0.15	≦0.75	≦1.25	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4916	無,P,AP	≦0.15	≦0.75	≦1.60	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4918	無,P,AP	≦0.15	≦0.90	≦1.60	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4919 E4924	無,P,AP	≦0.15	≦0.90	≦1.25	≦ 0.035	≦ 0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4927	無,P,AP	≦0.15	≦0.75	≦1.60	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E4928 E4948	無,P,AP	≦0.15		≦1.60	≦0.035	≦0.035	≦0.30	≦0.20	≦0.30	≦0.08
E5716	無,P,AP	≦0.12	≦0.90	≦1.60	≦0.03	≦0.03	≦1.00	≦0.30	≦0.35	_
E5518-N2	無,P,AP	<u>≤</u> 0.12		0.40~1.25	≦0.03	≦0.03	0.80~1.10			≦0.05
E5518-N3	無,P,AP	<u>≤</u> 0.10			≦0.03	≦0.03	1.10~2.00	_	_	_
E5518-N5	無,P,AP	<u>≤</u> 0.12			≦0.03	≦0.03	2.00~2.75	_	_	_
E5518-N7	無,P,AP		≦0.80		≦0.03	≦0.03	3.00~3.75	_	_	_

附表三 銲接金屬(全銲道)機械性質(摘錄)(Z3211:2008)

電銲條	種類		抗拉試驗		衝擊試驗
記號	有無後熱處理 記號	抗拉強度MPa	降伏強度MPa	延伸率%	試驗溫度℃
E4303	無,P,AP	430以上	330以上	20以上	0
E4310	無,P,AP	430以上	330以上	20以上	-30
E4311	₩, , ,,AP	430以上	330以上	20以上	-30
E4312	無,P,AP	430以上	330以 누	16以上	
E4313	₩, , ,,AP	430以上	330以上	10以上	
E4316	無,P,AP	430以上	330以上	20以上	-30
E4318	₩, г, АГ	430以上	330以上	20以上	-30
E4319	無,P,AP	430以上	330以上	20以上	-20
E4320	無,P,AP	430以上	330以上	20以上	_
E4324	無,P,AP	430以上	330以上	16以上	_
E4327	無,P,AP	430以上	330以上	20以上	-30
E4340	無,P,AP	430以上	330以上	20以上	0
E4903	無,P,AP	490以上	400以上	20以上	0
E4910	無,P,AP	480~650	400以上	20以上	-30
E4911	₩, г, АГ	460~050	400以上	20以上	-30
E4912					
E4913	無,P,AP	490以上	400以上	16以上	_
E4914					
E4915					
E4916	無,P,AP	490以上	400以上	20以上	-30
E4918					
E4919	無,P,AP	490以上	400以上	20以上	-20
E4924	無,P,AP	490以上	400以上	16以上	_
E4927					
E4928	無,P,AP	490以上	400以上	20以上	-30
E4948					
E5716	無,P,AP	570以上	490以上	16以上	-20
E4918-1M3	無,P,AP	490以上	400以上	20以上	_
E5518-N2	無,P,AP	550以上	470~550以上	20以上	-40
E5518-N3	無,P,AP	550以上	460以上	17以上	-50
E5518-N5	無,P,AP	550以上	460以上	17以上	-60
E5518-N7	無,P,AP	550以上	460以上	17以上	-75

JIS Z3312: 2009軟鋼,高張力鋼及低溫用鋼 MAG及MIG實心銲線

表示方法A

MAG及MIG銲接用實心銲線記號 銲接金屬(全銲道)之抗拉強度特性記號(見表二) 銲接後有無後熱處理之記號 無記號: 銲後原態 記號P:需後熱處理 記號AP: 銲後原態或需後熱處理 衝擊試驗温度記號(見表三) 衝擊能量記號 無記號:依規定試驗温度,須達27J以上或不要求 衝擊試驗 U記號:依規定試驗温度,須達47J以上 遮護氣體種類記號 C:CO₂氣體 M: 20~25%(體積比)CO2+氫氣混合氣體 A:1~3%氧氣土氦氣混合氣體 G:依買賣雙方之協定) 母線化學成份記號(見表四) G XX X X X X XX

表示方法B(本公司產品主要以此表示方法)

銲線記號 MAG及MIG銲接用記號 銲線之化學成份,遮護氣體,銲接金屬(全銲道)銲後原

Y GW XX

態機械性質記號(見表一)

JIS銲材規格

表一 銲線種類記號(表示方法B)

	銲線化學		抗拉強度	降伏強度	延伸率	衝	擊試驗
銲線種類	成份記號	遮護氣體	N/mm ²	N/mm ²	%	溫度℃	衝擊值 J
YGW11	11	CO_2	490-670	400以上	18以上	0	47以上
YGW12	12	CO_2	490-670	390以上	18以上	0	27以上
YGW13	13	CO_2	490-670	390以上	18以上	0	27以上
YGW14	14	CO_2	430-600	330以上	20以上	0	27以上
YGW15	15	80%Ar/20%CO ₂	490-670	400以上	18以上	-20	47以上
YGW16	16	80%Ar/20%CO ₂	490-670	390以上	18以上	-20	27以上
YGW17	17	80%Ar/20%CO ₂	430-600	330以上	20以上	-20	27以上
YGW18	J18	CO_2	550-740	460以上	7以上	0	70以上
YGW19	J19	80%Ar/20%CO ₂	550-740	460以上	17以上	0	47以上

表二 銲接金屬(全銲道)抗拉強度特性記號(表示方法A)

記號	抗拉強度 Mpa	降伏強度 Mpa	延伸率 %
43	430~600	330以上	20以上
49	490~670	390以上	18以上
52	520~700	420以上	17以上
55	550~740	460以上	17以上
57	570~770	490以上	17以上
57J	570~770	500以上	17以上
59	590~790	490以上	16以上
59J	590~790	500以上	16以上
62	620~820	530以上	15以上
69	690~890	600以上	14以上
76	760~960	680以上	13以上
78	780~980	680以上	13以上
78J	780~980	700以上	13以上
83	83~1030	745以上	12以上
備註:1 Mpa = 1 N/n	nm²		

表三 銲接金屬(全銲道)衝擊試驗溫度記號(表示方法A)

		吸收	能量
衝擊試驗溫度記號	衝擊試驗溫度℃	規定值 27J 的場合 (無記號)	規定值47J的場合 (記號:U)
		衝擊試驗片數:5個	衝擊試驗片數:3個
Υ	+20	5個試驗片結果需	
0	0	除去最大及最小	
1	-5	值,以剩餘3個試	
2	-20	驗片之平均結果評	
3	-30	價:	
4	-40		3個試驗片平均
5	-50	3個試驗片平均	值:47J以上
6	-60	值:27J以上	
7	-70	3個試驗片任一最	
8	-80	小值:20J以上	
9	-90	至少2個試驗片為	
10	-100	27J以上	
Z		無衝擊試驗規定	

表四 銲線化學成份(摘錄)(Z3312:2009)

化學成					化學	成份 W	t %				
份記號	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu*	Ti+Zr	Al
11	0.02~	0.55~ 1.10	1.40~	≦ 0.020	≦ 0.020	_	_	_	≦0.50	0.02~	_
	0.15	0.50~	1.90 1.25~	0.030 ≦	0.030 ≦					0.30	
12	0.02~	1.00	2.00	0.030	0.030	_	_	_	≦ 0.50	_	_
13	0.02~ 0.15	0.55~ 1.10	1.35~ 1.90	≦ 0.030	≦ 0.030	_	_	_	≦0.50	0.02~ 0.30	0.10~ 0.50
14	0.02~ 0.15	1.00~ 1.35	1.30~ 1.60	≦ 0.030	≦ 0.030	_	_	_	≦0.50	_	_
15	0.02~ 0.15	0.40~ 1.00	1.00~ 1.60	≦ 0.030	≦ 0.030	_	_	_	≦0.50	0.02~ 0.15	_
16	0.02~ 0.15	0.40~ 1.00	0.90~ 1.60	≦ 0.030	≦ 0.030	_	_	_	≦0.50	_	_
17	0.02~ 0.15	0.20~ 0.55	1.20~ 2.10	≦ 0.030	≦ 0.030	_	_	_	≦0.50	_	_
18	0.02~ 0.15	0.50~ 1.10	1.60~ 2.40	≦ 0.030	≦ 0.030	_	_	_	≦0.50	0.02~ 0.30	_
J18	≦0.15	0.55~ 1.10	1.40~ 2.60	≦ 0.030	≦ 0.030	_	_	≦ 0.40	≦0.50	≦0.30	_
J19	≦0.15	0.40~ 1.00	1.40~ 2.00	≦ 0.030	≦ 0.030	_	_	≦ 0.40	≦0.50	≦0.30	_

- S 銲材規格

表四 銲線化學成份(摘錄)(Z3312:2009)(續)

						•					
化學成					化學	成份 W	't %				
份記號	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu*	Ti+Zr	Al
2	≦0.07	0.40~ 0.70	0.90~ 1.40	≦ 0.025	≦ 0.030	_	_	_	≦0.50	* *	0.05~ 0.15
3	0.06~	0.45~	0.90~	≦	≦	_	_	_	≦0.50	_	_
	0.15	0.75	1.40	0.025	0.035				_0.00		
4	0.06~	0.65~ 0.85	1.00~ 1.50	≦ 0.025	≦ 0.035	_	_	_	≦0.50	_	_
6	0.06~ 0.15	0.80~ 1.15	1.40~ 1.85	≦ 0.025	≦ 0.035	_	_	_	≦0.50	_	_
7	0.07~ 0.15	0.50~	1.50~	≦ 0.025	≦ 0.035	_	_	_	≦0.50	_	_
1M3	≦0.12	0.30~	≦1.30	≦ 0.025	≦ 0.025	≦0.20	_	0.40~ 0.65	≦0.35	_	_
N1	≦0.12	0.20~ 0.50	≦1.25	≦ 0.025	≦ 0.025	0.60~ 1.00	_	≦0.35	≦0.35	_	_
N2	≦0.12	0.40~ 0.80	≦1.25	≦ 0.025	≦ 0.025	0.80~ 1.10	≦0.15	≦0.35	≦0.35	_	V: ≦0.05
N3	≦0.12	0.30~ 0.80	1.20~ 1.60	≦ 0.025	≦ 0.025	1.50~ 1.90	_	≦0.35	≦0.35	_	_
N5	≦0.12	0.40~ 0.80	≦125	≦ 0.025	≦ 0.025	2.00~ 2.75	_	_	≦0.35	_	_
N7	≦0.12	0.20~ 0.50	≦1.25	≦ 0.025	≦ 0.025	3.00~ 3.75	_	≦0.35	≦0.35	_	_

註釋:

- *表有鍍銅時需包含鍍銅含量
- **Ti含量規定為0.05-0.15, Zr含量規定為0.02-0.12

JIS Z3316: 2001 軟鋼及低合金鋼用TIG銲棒及實心銲線規格

299

(Z3316: 2001) **銲線化學成份**(摘錄) 表

線材積 CC Si Mn P SC Cu* Ni Cr Mo TH-Zr 其他自 YCT50 = 0.15 = 0.15 = 1.00 = 0.13 = 0.03 = 0.50 = 0.50 = 0.70 = 0.70 = 0.15 = 0.50 = 0.50 = 0.70 = 0.05 = 0.50 = 0.70 = 0.66<	棒材或						化種	化學成份 Wt%	%				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	線材規格	O	Si	Mn	۵	S	*nO	Z	Cr	Mo	A	Ti+Zr	其他合計
\(\inft\) \(\inft\) <t< th=""><th>YGT50</th><th>≤0.15</th><th>€1.00</th><th>≤1.90</th><th>€0.030</th><th>€0.030</th><th>≥0.50</th><th>ı</th><th></th><th>I</th><th>≤0.15</th><th>Ti≦0.15 Zr≦0.12</th><th>€0.50</th></t<>	YGT50	≤0.15	€1.00	≤1.90	€0.030	€0.030	≥0.50	ı		I	≤0.15	Ti≦0.15 Zr≦0.12	€0.50
≦0.15 ≦1.00 ≦2.25 ≦0.025 ≦0.025 ≤1.80 ≤0.70 ≤0.65 — ≤0.25 ≤0.025 ≤0.025 ≤0.50 ≤1.80 ≤0.65 — ≤0.05 ≤0.60 ≤0.60 ≤0.65 — ≤0.20 ≤0.025 ≤0.025 ≤0.02 ≤0.60 ≤0.60 ≤0.60 ≤0.65 —	YGT60	≦0.15	€1.00	≦2.00	≦0.025	≤0.025	≥0.50	≦1.80	€0.70	€0.65		€0.20	€0.50
≦0.15 ≦0.80 ≦2.25 €0.025 €0.025 €0.50 ≤2.60 €0.60 <	YGT62	≦0.15	≦1.00	≦2.25	≦0.025	≤0.025	≥0.50	≦1.80	€0.70	€0.65	I	€0.20	€0.50
$\begin{array}{llllllllllllllllllllllllllllllllllll$	YGT70	≦0.15	€0.80	≦2.25	≦0.025	€0.025	≥0.50	≦2.60	09.0≡	€0.65	I	ı	€0.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	YGT80	≤0.15	≥0.80	≦2.25	≦0.025	≤0.025	≥0.50	€3.80	09.0≅	€0.90		I	€0.50
$\begin{array}{llllllllllllllllllllllllllllllllllll$	YGTM	0.05~0.15	€0.80	≦2.00	≦0.025	≤0.025	≥0.40	I	I	0.40~0.65		I	€0.50
0.05~0.15 ≤0.80 ≤1.60 ≤0.025 ≤0.40 − 1.00~1.50 0.40~0.65 − − ≤0.05 ≤0.02 ≤0.025 ≤0.025 ≤0.40 − 1.00~1.50 0.40~0.65 − − 0.05~0.15 ≤0.80 ≤1.60 ≤0.025 ≤0.025 ≤0.40 − 2.00~2.70 0.90~1.20 − − ≤0.05 ≤0.025 ≤0.025 ≤0.40 − 2.00~2.70 0.90~1.20 − − ≤0.15 ≤0.80 ≤1.60 ≤0.025 ≤0.025 ≤0.40 − 2.70~2.70 0.90~1.20 − − ≤0.15 ≤0.80 ≤1.60 ≤0.025 ≤0.025 ≤0.40 − 2.70~2.00 0.90~1.20 − − ≤0.15 ≤0.80 ≤1.60 ≤0.025 ≤0.025 ≤0.40 − 2.70~2.06 0.90~1.20 − −	YGTML	€0.05	€0.80	≦1.60	≦0.025	≦0.025	≥0.40	ı	I	0.40~0.65	I	ı	€0.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	YGT1CM	0.05~0.15	≥0.80	≥1.60	≦0.025	≤0.025	≥0.40	I	1.00~1.50	0.40~0.65		I	€0.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	YGT1CML		€0.80	≦1.60	≦0.025	≦0.025	≥0.40	I	1.00~1.50	0.40~0.65	I	I	€0.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	YGT2CM		≥0.80	≥1.60	≦0.025	≤0.025	≥0.40	I	2.00~2.70	0.90~1.20		I	€0.50
≤ 0.15 ≤ 0.80 ≤ 1.60 ≤ 0.025 ≤ 0.025 ≤ 0.40 \sim $2.70 \sim 3.50$ $0.90 \sim 1.20$ \sim ≤ 0.15 ≤ 0.80 ≤ 1.60 ≤ 0.025 ≤ 0.025 ≤ 0.40 \sim $4.00 \sim 6.00$ $0.45 \sim 0.65$	YGT2CML	≥0.05	€0.80	≦1.60	≦0.025	≤0.025	≥0.40	I	2.00~2.70	0.90~1.20		ı	€0.50
$ \leq 0.15 \qquad \leq 0.80 \qquad \leq 1.60 \qquad \leq 0.025 \qquad \leq 0.025 \qquad \leq 0.40 \qquad - \qquad 4.00 \sim 6.00 \qquad 0.45 \sim 0.65 $	YGT3CM	≦0.15	€0.80	≦1.60	≦0.025	≦0.025	≥0.40	I	2.70~3.50	0.90~1.20	I	I	€0.50
	YGT5CM	≥0.15	≥0.80	≥1.60	≦0.025	≦0.025	≥0.40	I	4.00~6.00	0.45~0.65			≥0.50

*1表有鍍銅時需包含鍍銅含量 拙

(23316:2001) (摘錄) (全銲道)機械性質 **銲接金屬** 表二

	相當本公司產品	GT50 GT52T	GT60											
	熱處理	·	滚 F	贬 %	验		(ס			Q			O
擊試驗	衝撃値	<u>≥</u> 47	≥39	≥39	≥39	39	≥47	≥47	≥47	≥47	≥47	≥47	≥47	≥47
重	関い。	0	-20	-20	-20	-20	0	0	0	0	0	0	0	0
	延伸率 %	≥22	≥17	≥17	≥ 16	≥ 15	≥25	≥25	≥ 19	≥20	≥17	≥20	≥17	≥ 18
抗拉試驗	降伏強度 N/mm²	≥390	≥440	≥200	≥550	≥665	≥390	≥205	≥460	≥315	≥530	≥315	≥530	≥295
	抗拉強度 N/mm²	≥490	≥590	≥610	069≅	≥780	≥490	≥410	≥260	≥520	≥630	≥520	≥630	≥490
† ‡	俸付3 線材規格	YGT50	YGT60	YGT62	YGT70	YGT80	YGTM	YGTML	YGT1CM	YGT1CML	YGT2CM	YGT2CML	YGT3CM	YGT5CM

- 銲後熱處理説明如下: a.先加熱至620±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至300℃後空冷。 b.先加熱至690±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至300℃後空冷。 c.先加熱至740±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至300℃後空冷。

- S銲材規格

JIS Z3316

包藥銲線記號

銲接金屬(全銲道)抗拉強度記號 (見表一);銲道接頭橫向抗拉強 度記號(略)

衝擊試驗温度記號(見表二)

使用特性記號(見表三)

銲接姿勢記號

(0:平及水平角銲;1:全姿勢)

遮護氣體種類記號

C:CO₂氣體

M:20~25%(體積比)CO2+氫氣

G:依買賣雙方之協定

N:無氣遮護型

銲接種類記號

A: 多道銲接之銲後原態 P:多道銲接需後熱處理

AP: 多道銲接之銲後原態或需

後熱處理

S:單道銲接之銲後原態

全熔填銲接金屬之化學成份記號 (見表四)

TXXXTX-XXX-XXX-UHX: 追加區分記號

一 銲接金屬之擴散氫記號(見表五)

- 衝擊能量記號

無記號:依規定試驗温度,須達

27J以上或不要求衝擊試

U記號:依規定試驗温度,須達

47J以上

表一熔填金屬強度記號

記號	抗拉強度 Mpa	降伏強度 Mpa	延伸率 %
43	430~600	330以上	20以上
49	490~670	390以上	18以上
49J*	490~670	400以上	18以上
52*	520~700	420以上	17以上
55	550~740	460以上	17以上
57	570~770	490以上	17以上
57J*	570~770	500以上	17以上
59	590~790	490以上	16以上
59J*	590~790	500以上	16以上
62	620~820	530以上	15以上
69	690~890	600以上	14以上
76	760~960	680以上	13以上
78	780~980	680以上	13以上
78J*	780~980	700以上	13以上
83	83~1030	745以上	12以上

備註:1 Mpa = 1 N/mm²

*: 49J、52、57J、59J及78J適用於U記號。

表二 銲接金屬(全銲道)衝擊試驗溫度記號

		吸收	能量
衝擊試驗溫度記號	衝擊試驗溫度℃	規定值27J的場合 (無記號)	規定值47J的場合 (記號:U)
		衝擊試驗片數:5個	衝擊試驗片數:3個
Υ	+20	5個試驗片結果需	
0	0	除去最大及最小	
1	-5	值,以剩餘3個試	
2	-20	驗片之平均結果評	
3	-30	價:	
4	-40		3個試驗片平均
5	-50	3個試驗片平均	值:47J以上
6	-60	值:27J以上	
7	-70	3個試驗片任一最	
8	-80	小值:20J以上	
9	-90	至少2個試驗片為	
10	-100	27J以上	
Z		無衝擊試驗規定	

S銲材規格

Z3313

SIC

JIS銲材規格

表三 銲線使用特性記號

			业十 // // // // // // // // // // // // //	9 1 A B D 3//C
記號	遮護氣體	電流極性	填充劑種類	使用特性
T1	有	DC(+)	Rutile	噴灑移行、低銲濺量、高銲接效率、 銲道外觀平至微凸
T2	有	DC(+)	Rutile	噴灑移行、與T1使用特性相近、Mn 及Si含量較T1高
Т3	無	DC(+)	未規定	噴灑移行、適高熔填速率銲接
T4	無	DC(+)或AC	鹽基型	球滴移行、適高熔填速率、耐熱龜裂性佳、滲透較淺
T5	有	DC(+)或DC(-)	石灰型	球滴移行、銲道外觀較凸、熔渣薄且 有不均現象、衝擊韌性及耐熱龜裂性 較 T1 優良
Т6	無	DC(+)	未規定	噴灑移行、衝擊韌性優良、銲接較深 開槽之根部滲透及脱渣性亦佳
T7	無	DC(-)	未規定	噴灑移行、適高熔填速率、耐熱龜裂 性佳
T10	無	DC(-)	未規定	噴灑移行、高熔填速率全厚度適用
T13	無	DC(-)	未規定	短路移行、適合單面滲透無背襯銲接
T14	無	DC(-)	未規定	噴灑移行、適合表面有底漆或銹皮鋼 板之單道銲接
T15	有	DC(+)	鐵粉型	噴灑移行、合成型銲線、鐵粉為主要 成份、熔渣量極少
TG			依買賣雙力	方之協定

表四 全熔填銲接金屬化學成份記號(摘錄)

章 刀 早春					化學成化	分 Wt %				
記號	С	Si	Mn	Р	S	Ni	Cr	Мо	V	Al
無記號	≦0.18	≦0.90	≦2.00	≦ 0.030	≦ 0.030	≦0.50	≦0.20	≦0.30	≦0.08	≦2.0
K	≦0.20	≦1.00	≦1.60	≦ 0.030	≦ 0.030	≦0.05	≦0.20	≦0.30	≦0.08	_
2M3	≦0.12	≦0.80	≦1.50	≦ 0.030	≦ 0.030	_	_	0.40~ 0.65	_	≦1.8
N1	≦0.12	≦0.80	≦1.75	≦ 0.030	≦ 0.030	0.30~ 1.00	_	≦0.35	_	≦1.8
N2	≦0.12	≦0.80	≦1.75	≦ 0.030	≦ 0.030	0.80~ 1.20	_	≦0.35	_	≦1.8
N3	≦0.12	≦0.80	≦1.75	≦ 0.030	≦ 0.030	1.00~ 2.00	_	≦0.35	_	≦1.8
N5	≦0.12	≦0.80	≦1.75	≦ 0.030	≦ 0.030	1.75~ 2.75	_	_	_	≦1.8
N7	≦0.12	≦0.80	≦1.75	≦ 0.030	≦ 0.030	2.75~ 3.75	_	_	_	≦1.8
G	抗拉強 Mn:1)度記號5 . 75 以上		2,69,76, 50以上,	78,78J或 Cr:0.3	83的場合 80以上,	会,Si: Mo:0.2	0.80以上 20以上,		

表五 銲接金屬氫含量記號 單位: ml/100g銲接金屬

記號	氫含量
H5	5以下
H10	10以下
H15	15以下

- S銲材規格

305

表一 全熔填銲接金屬化學成份(摘錄)(Z3214:1999)

	扯 更 不 结	明以皆幸	銲接姿勢			-1	全熔填銲接	全熔填銲接金屬化學成份 Wt%	\$分 Wt %		
17×17 日1・17×11×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11・17×11	沒不泥	电 /////	(罪)	O	Si	Mn	۵	ဟ	Z	Ċ	Cu
DA5001W		おく		≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5001P 鉄	鈦鐵礦系	% (+)	F.V.O.H	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	1	0.30~0.70	0.20~0.60
DA5001G		(≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030	0.25~0.70	€0.30	0.20~0.60
DA5003W	井器	1		≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5003P	調削に開か	% C	F.V.O.H	≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030		0.30~0.70	0.20~0.60
DA5003G	以甸尔	(≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030	0.25~0.70	€0.30	0.20~0.60
DA5016W		1		≦0.12	€0.90	0.30~1.40	≦0.040	≦0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5016P (低氫系		F.V.O.H	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	ı	0.30~0.70	0.20~0.60
DA5016G		DC(+)		≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.25~0.70	€0.30	0.20~0.60
DA5816W		1100		≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5816P (低氫系	元	F.V.O.H	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	1	0.30~0.70	0.20~0.60
DA5816G		(+) (-)		≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.25~0.70	€0.30	0.20~0.60
DA5026W				≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5026P				≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	1	0.30~0.70	0.20~0.60
DA5026G	鐵粉	AC於		≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.25~0.70	€0.30	0.20~0.60
DA5826W (低氫祭	DC (+)	=	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5826P				≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	1	0.30~0.70	0.20~0.60
DA5826G				≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.25~0.70	€0.30	0.20~0.60
DA5000W		1	F.V.O.H	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.05~0.70	0.45~0.75	0.30~0.70
DA5000P 特	特殊系	※ (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	以其中—	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	I	0.30~0.70	0.20~0.60
DA5000G		(-) OU	種姿勢	≦0.12	€0.90	0.30~1.40	≦0.040	€0.030	0.25~0.70	€0.30	0.20~0.60

註:F:平銲;V:立銲;O:仰銲;H:橫銲或平角銲,銲接姿勢V和O,不適用於直徑大於5.0mm的銲條

(Z3214:1999) **銲接金屬(全銲道)機械性質(摘錄)** 表二

	相當本公司產品							GL78W1			GL88W2											
平/ 公童 学/	画(a)C)	≥47/0°C	≥47/-5°C	≥47/-5 °C	≥47/-5°C	≥47/0°C	≥47/0°C	≥47/0°C	≥47/-5°C	≥47/-5°C	≥47/-5°C	≥47/0°C	≥47/0°C	≥47/0°C								
	距争 %	≥20	≥20	≥20	≥20	≥20	≥20	≥23	≥23	≥23	≥ 18	≥ 18		≥23	≥23	≥23	 18		≥ 18	≥20	≥20	≥20
抗拉試驗	降伏強度 N/mm²	≥390	≥390	≥390	≥390	≥390	≥390	≥390	≥390	≥390	≥490	≥490	≥490	≥390	≥390	≥390	≥490	≥490	≥490	≥390	≥390	≥390
	抗拉強度 N/mm²	≥490	≥490	≥490	≥490	≥490	≥490	≥490	≥490	≥490	≥570	≥570	≥570	≥490	≥490	≥490	≥570	≥570	≥570	≥490	≥490	≥490
	銲條規格	DA5001W	DA5001P	DA5001G	DA5003W	DA5003P	DA5003G	DA5016W	DA5016P	DA5016G	DA5816W	DA5816P	DA5816G	DA5026W	DA5026P	DA5026G	DA5826W	DA5826P	DA5826G	DA5000W	DA5000P	DA5000G

JIS銲材規格

 $\frac{1}{2}$

13 23

全熔填銲接金屬化學成份記號 被覆系統及電流極性記號 低合金耐熱鋼用記號

電銲條記號

4* 8* 4" 84	北京の公	(告) 基 學 於 冊			松	全熔填銲接金屬化學成份 Wt %	化學成份 Wt	%		
並干 11米 万兄 17台	恢復未配	电加燃性(計)	ပ	Si	Mn	۵	ဟ	Z	Ċ	Mo
DT1216	低氫系	AC或DC (+)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040	I	ı	0.40~0.65
DT2315	兵氫 ※	DC(+)	≥0.05	≥1.00	06.0≅	≦0.040	≦0.040	I	1.00~1.50	0.40~0.65
DT2313	高氧化鈦	AC或DC(一)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040	I	1.00~1.50	0.40~0.65
DT2316	低氫 祭	AC或DC (+)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040	I	1.00~1.50	0.40~0.65
DT2318	鐵粉低氫系	AC或DC (+)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040	I	1.00~1.50	0.40~0.65
DT2415	低氫 ※	DC(+)	≥0.05	≥1.00	06.0≅	≦0.040	≦0.040		2.00~2.50	0.90~1.20
DT2413	高氧化鈦	AC或DC(一)	≥0.12	≥0.80	06.0≅	≦0.040	≦0.040	I	2.00~2.50	0.90~1.20
DT2416	低氫 祭	AC或DC (+)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040		2.00~2.50	0.90~1.20
DT2418	鐵粉低氫系	AC或DC (+)	≦0.12	≥0.80	06.0≅	≦0.040	≦0.040		2.00~2.50	0.90~1.20
DT2516	低氫 ※	AC或DC (+)	≦0.10	06.0≅	€0.75	≦0.040	≦0.030	€0.40	4.00~6.00	0.45~0.65
DT2616	低氫系	AC製DC (+)	≦0.10	06.0≅	≥1.00	≦0.040	≤0.030	≦0.40	≤0.40 8.00~10.50 0.85~1.20	0.85~1.20

註:AC:交流;DC±:直流(正電極或負電極)

(Z3223:2000) (摘錄) 全銲道)機械性質 銲接金屬

17 17 17 17 17 17 17 17 17 17 17 17 17 1	日本公司 中国 中国	GL76A1			GL86B1/B2	GL88B1/B2			GL96B3	GL98B3		
4日次 新市工田	27. 23. (3.)	Ø				2	Ω				(IJ.
	延伸率 %	≥25	≥19	≥16	≥19	≥19	≥17	≥14	≥17	≥17	≥19	≥19
抗拉試驗	降伏強度 N/mm²	≥390	≥390	≥460	≥460	≥460	≥460	≥530	≥530	≥530	≥460	≥460
	抗拉強度 N/mm²	≥490	≥530	≥ 260	≥ 260	≥ 260	≥ 260	≥630	≥630	≥630	≥ 260	≥ 560
	全 條規格	DT1216	DT2315	DT2313	DT2316	DT2318	DT2415	DT2413	DT2416	DT2418	DT2516	DT2616

註:銲接後熱處理説明

a.先加熱至620±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至315℃後空冷b.先加熱至690±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至315℃後空冷c.先加熱至740±15℃,持温1小時後,每小時以180℃以下的冷卻速度,爐冷至315℃後空冷

JIS Z3221

不銹鋼電銲條記號

- 全熔填銲接金屬化學成份記號(見表一)

JIS Z3011電銲條適用銲接姿勢

1: PA,PB,PC,PD,PE,PF

2 : PA,PB

4 : PA,PB,PC,PD,PE,PF,PG

- 被覆劑及電流特性記號

5:直流專用的塩基型被覆劑

6:直流或交流用的氧化鈦型被覆劑,適用銲接姿勢4之場合為直流專用

7:直流或交流用的氧化矽型被覆劑,適用銲接姿勢4之場合為直流專用

ES XXX - X1X2

註:PA(平銲)、PB(橫角銲)、PC(橫銲)、PD(仰角銲)、PE(仰銲)、PF(立銲上進)及PG(立銲下進)

表一 全熔填銲接金屬化學成份記號

化學成					化學	₿成份 V	Vt %				
份記號	С	Si	Mn	P	S	Ni	Cr	Mo	Cu	N	其它
209	≦0.06	≦1.00	4.0~ 7.0	≦0.04	≦0.03	9.5~ 12.0	20.5~ 24.0	1.5~ 3.0	≦ 0.75	0.10~ 0.30	V:0.1~ 0.3
219	≦0.06	≦1.00	8.0~ 10.0	≦0.04	≦0.03	5.5~ 7.0	19.0~ 21.5	≦ 0.75	≦0.75	0.10~ 0.30	_
240	≦0.06	≦1.00	10.5~ 13.5	≦0.04	≦0.03	4.0~ 6.0	17.0~ 19.0	≦0.75	≦ 0.75	0.10~ 0.30	_
307	0.04~ 0.14	≦1.00	3.30~ 4.75	≦0.04	≦0.03	9.0~ 10.7	18.0~ 21.5	0.5~ 1.5	≦0.75	_	_
308	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 11.0	18.0~ 21.0	≦0.75	≦0.75	_	_
308L	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 12.0	18.0~ 21.0	≦ 0.75	≦ 0.75	_	_
308H	0.04~ 0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 11.0	18.0~ 21.0	≦0.75	≦0.75	_	_
308N2	≦0.10	≦0.90	1.00~ 4.00	≦ 0.040	≦ 0.030	7.0~ 11.0	20.0~ 25.0	_	_	0.12~ 0.30	_
308Mo	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.75	_	_
308MoJ	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.75	_	_

表一 全熔填銲接金屬化學成份記號(續)

		表一	土石	一只 业十]:	安金 屬	16 -5-10	(I)) BD:	ル (小貝	. /		
化學成					化學	■成份 W	/t %				
份記號	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	其它
308LMo	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.75	_	_
309	≦0.15	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	22.0~ 25.0	≦0.75	≦0.75	_	_
309L	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	22.0~ 25.0	≦0.75	≦0.75	_	_
309Mo	≦0.12	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	22.0~ 25.0	2.0~ 3.0	≦0.75	_	_
309LMo	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	22.0~ 25.0	2.0~ 3.0	≦0.75	_	_
309Nb	≦0.12	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	22.0~ 25.0	≦0.75	≦0.75	_	Nb:0.7~ 1.00
309LNb	≦0.04	≦1.00	0.5~ 2.5	≦ 0.040	≦ 0.030	12.0~ 14.0	22.0~ 25.0	≦0.75	≦0.75	_	Nb:0.7~ 1.00
310	0.08~ 0.20	≦ 0.75	1.0~ 2.5	≦0.03	≦0.03	20.0~ 22.5	25.0~ 28.0	≦0.75	≦0.75	_	_
310H	0.35~ 0.45	≦0.75	1.0~ 2.5	≦0.03	≦0.03	20.0~ 22.5	25.0~ 28.0	≦0.75	≦0.75	_	_
310Mo	≦0.12	≦0.75	1.0~ 2.5	≦0.03	≦0.03	20.0~ 22.0	25.0~ 28.0	2.0~ 3.0	≦0.75	_	_
310Nb	≦0.12	≦0.75	1.0~ 2.5	≦0.03	≦0.03	20.0~ 22.0	25.0~ 28.0	≦0.75	≦0.75	_	Nb:0.7~ 1.00
312	≦0.15	≦1.00	0.5~ 2.5	≦0.04	≦0.03	8.0~ 10.5	28.0~ 32.0	≦0.75	≦0.75	_	_
316	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.75	_	_
316L	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.75	_	_
316H	0.04~ 0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.75	_	_
316LCu	≦0.04	≦1.00	0.5~ 2.5	≦ 0.040	≦ 0.030	11.0~ 16.0	17.0~ 20.0	1.20~ 2.75	1.00~ 2.50	_	_
317	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	18.0~ 21.0	3.0~ 4.0	≦0.75	_	_
317L	≦0.04	≦1.00	0.5~ 2.5	≦0.04	≦0.03	12.0~ 14.0	18.0~ 21.0	3.0~ 4.0	≦0.75	_	_
318	≦0.08	≦1.00	0.5~ 2.5	≦0.04	≦0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.75		Nb:6× C~1.00
320	≦0.07	≦0.60	0.5~ 2.5	≦0.04	≦0.03	32.0~ 36.0	19.0~ 21.0	2.0~ 3.0	3.0~ 4.0	_	Nb:8× C~1.00

- S銲材規格

JIS Z3221

310

銲接金屬(全銲道)機械性質記號

化學成					化粤	見成份 W	/t %				
份記號		Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	其它
2201 D	<0.00	<0.00	1.5~	≦	≦	32.0~	19.0~	2.0~	3.0~		Nb:8×
320LR	≦0.03	≥0.30	2.5	0.020	0.015	36.0	21.0	3.0	4.0	_	C~0.40
320 11	≦0.08	≤n on	\leq	≦	≦	6.0~	23.0~	1.00~	_	_	_
32301	=0.00	=0.30	1.50	0.040	0.030	8.0	28.0	3.00			
329,141	≦0.04	≤1.0	0.5~	≦	≦	8.0~	23.0~	3.0~	≦1.0	0.08~	
			2.5	0.040	0.030	11.0	27.0	4.5		0.30	≦2.5
330	0.18~ 0.25	≦1.00	1.0~	≦0.04	≦0.03		14.0~	≦0.75	≦0.75	_	_
	0.25		2.5			37.0	17.0				
330H	0.35~	≦1.00	1.0~ 2.5	≦0.04	≦0.03	33.0~	14.0~	≦0.75	≦0.75	_	_
	0.45		0.5~			0.0~	10.0~				Nb:8×
347	≦0.08	≦1.00	2.5	≦0.04	≦0.03	11 0	21.0	≦0.75	≦0.75	_	C~1.00
			0.5~	≦	≦	9.0~	18.0~				Nb:8×
347L	≦0.04	≦1.00		0.040		11.0	21.0	≦0.75	≦0.75	_	C~1.00
			0.5~			0 O~		0.35~			000
349	≦0.13	≦1.00	2.5	≦0.04	≦0.03	10.0	21.0	0.65	≦0.75	_	а
000	-0.00			-0.00	-0.00				0.6~		
383	≥0.03	≦0.90	2.5	≦0.02	≥0.02	33.0	29.0	4.2	1.5	_	_
385	<0.00	≦0.90	1.0~	<0.00	<0.00	24.0~	19.5~	4.2~	1.2~		_
303	=0.03	=0.90	2.5	=0.03	=0.02	26.0	21.5	5.2	2.0		
400NIh	≦0.12	≤1 nn	≦	≦	≦	≦0.60	11.0~	≤n 75	≦0.75		Nb:0.5~
TUSINO			1.00	0.040	0.030	_0.00	14.0				1.50
410	≤0.12	≦0.90	≦	≤0.04	≤0.03	≤0.60	11.0~	≤0.75	≦0.75	_	_
		_ 5.00				_ 5.00	14.0		_ 5 5		
410NiMo	≤0.06	≦0.90	≦	≦0.04	≦0.03	4.0~	11.0-	0.40~	≦0.75	_	_
			1.00			5.0	12.5	0.70			
430	≦0.10	≦0.90	≦1.0	≦0.04	≦0.03	≦0.6	15.0~	≦0.75	≦0.75	_	_
											Nh.O.F
430Nb	≦0.10	≦1.00	1.00	0.040	0 030	≦0.60	10.0~	≦0.75	≦0.75	_	Nb:0.5~
						1.5~					Nb:0.15~
630	≦0.05	≦0.75	0.25~	≦0.04	≦0.03	5.0	16.75	≦0.75	3.25~ 4.00	_	0.30
								1.0~			
16-8-2	≦0.10	≦0.60	2.5	≦0.03	≦0.03	9.5	16.5	2.0	≦0.75	_	_
							21.5~	2.5~	< 0.75	0.08~	
2209	≦0.04	1.00	2.0	≘0.04	≘0.03	10.5	23.5	3.5	≦0.75	0.20	_

 $2553 \quad \leq 0.06 \quad \leq 1.0 \quad 0.5^{\sim} \\ 1.5 \quad \leq 0.04 \quad \leq 0.03 \quad 6.5^{\sim} \\ 8.5 \quad 24.0^{\sim} \quad 2.9^{\sim} \quad 1.5^{\sim} \quad 0.10^{\sim} \\ 8.5 \quad 27.0 \quad 3.9 \quad 2.5 \quad 0.25$

 $2593 \quad \leq 0.04 \quad \leq 1.0 \quad 0.5^{\sim} \\ 1.5 \quad \leq 0.04 \quad \leq 0.03 \quad 8.5^{\sim} \quad 24.0^{\sim} \quad 2.9^{\sim} \quad 1.5^{\sim} \quad 0.08^{\sim} \\ 10.5 \quad 27.0 \quad 3.9 \quad 3.0 \quad 0.25$

銲接金屬(全銲道)機械性質記號(續)

化學成份記號	抗拉強度 MPa	延伸率 %	銲後熱處理
329J4L	690以上	15以上	不需要
330	520以上	23以上	不需要
330H	620以上	8以上	不需要
347	520以上	25以上	不需要
347L	510以上	25以上	不需要
349	690以上	23以上	不需要
383	520以上	28以上	不需要
385	520以上	28以上	不需要
409Nb	450以上	13以上	а
410	450以上	15以上	b
410NiMo	760以上	10以上	С
430	450以上	15以上	а
430Nb	450以上	13以上	а
630	930以上	6以上	d
16-8-2	520以上	25以上	不需要
2209	690以上	15以上	不需要
2553	760以上	13以上	不需要
2593	760以上	13以上	不需要

備註:

銲後熱處理説明如下:

- a. 試片加工前,先加熱至760~790℃,持温2小時後,每小時以55℃以下的冷卻速度, 爐冷至595℃後空冷。
- b. 試片加工前,先加熱至730~760℃,持温1小時後,每小時以110℃以下的冷卻速度,爐冷至315℃後空冷。
- c. 試片加工前,先加熱至595~620℃,持温1小時後空冷。
- d. 試片加工前,先加熱至1025~1050℃,持温1小時後,空冷至室温為止。然後再加熱至610~630℃,持温4小時後再空冷。

JIS Z3321: 2010 不銹鋼銲接用銲棒、銲線及鋼帶

線材					化學	B成份 Wt %	, 0			
記號	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	其它
308	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	9.0~11.0	19.5~22.0	≦0.75	≦0.75	_
308L	≦0.03	≦0.65	1.0~2.5	≦0.03	≦0.03	9.0~11.0	19.5~22.0	≦0.75	≦0.75	_
308S	≦0.03	0.65~ 1.00	1.0~2.5	≦0.03	≦0.03	9.0~11.0	19.5~22.0	≦ 0.75	≦ 0.75	
309	≦0.12	≦0.65	1.0~2.5	≦0.03	≦0.03	12.0~14.0	23.0~25.0	≦0.75	≦0.75	_
309L	≦0.03	≦0.65	1.0~2.5	≦0.03	≦0.03	12.0~14.0	23.0~25.0	≦0.75	≦0.75	_
309Mo	≦0.12	≦0.65	1.0~2.5	≦0.03	≦0.03	12.0~14.0	23.0~25.0	2.0~3.0	≦0.75	_
310	0.08~ 0.15	≦0.65	1.0~2.5	≦0.03	≦0.03	20.0~22.5	25.0~28.0	≦ 0.75	≦0.75	_
310S	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	20.0~22.5	25.0~28.0	≦0.75	≦0.75	_
312	≦0.15	≦0.65	1.0~2.5	≦0.03	≦0.03	8.0~10.5	28.0~32.0	≦0.75	≦0.75	_
16-8-2	≦0.10	≦0.65	1.0~2.5	≦0.03	≦0.03	7.5~9.5	14.5~16.5	1.0~2.0	≦0.75	_
316	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	11.0~14.0	18.0~20.0	2.0~3.0	≦0.75	_
316L	≦0.03	≦0.65	1.0~2.5	≦0.03	≦0.03	11.0~14.0	18.0~20.0	2.0~3.0	≦0.75	_
316LCu	≦ 0.030	≦0.65	1.0~2.5	≦0.03	≦0.03	11.0~14.0	18.5~20.5	2.0~3.0	1.0~ 2.5	Cu: 1.0 ~2.5
317	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	13.0~15.0	18.5~20.5	3.0~4.0	≦0.75	_
317L	≦0.03	≦0.65	1.0~2.5	≦0.03	≦0.03	13.0~15.0	18.5~20.5	3.0~4.0	≦0.75	_
321	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	9.0~10.5	18.5~20.5	≦ 0.75	≦0.75	Ti9× C~1.0
347	≦0.08	≦0.65	1.0~2.5	≦0.03	≦0.03	9.0~11.0	19.0~21.5	≦ 0.75	≦ 0.75	Nb10× C~1.0
347L	≦0.03	≦0.65	1.0~2.5	≦0.03	≦0.03	9.0~11.0	19.0~21.5	≦0.75	≦0.75	Nb10× C~1.0
410	≦0.12	≦0.50	≦0.6	≦0.03	≦0.03	≦0.6	11.5~13.5	≦0.75	≦0.75	_
Y430	≦0.10	≦0.50	≦0.6	≦0.03	≦0.03	≦0.6	15.5~17.0	≦0.75	≦0.75	_

備註1:

符號説明

XX XXX

┗ 銲材化學成份的記號

一 不銹鋼銲材記號

YS:不銹鋼銲棒及銲線

BS:不銹鋼鋼帶

S銲材規格

JIS Z3323: 2007 不銹鋼包藥銲線

不銹鋼包藥銲線或銲棒記號

全熔填銲接金屬化學成份記號(表一、二、三及四)

包藥銲線或銲棒種類

F: 銲渣系包藥銲線

M:金屬粉系包藥銲線

R:包藥型TIG銲棒

遮護氣體種類記號

C:二氧化碳氣體

M: 二氧化碳(20~25%)+氫氣(75~80%)混合氣體

B:可選擇C或M

A:氧氣3%(體積比)以下+氫氣混合氣體

1: 氫氣

N:無氣遮護型

G:上述以外之遮護氣體

銲接姿勢記號

0:平銲及水平角銲;1:全姿勢

TS XXX- X1 X2 X3

表一 全熔填銲接金屬化學成份記號(氣體遮護型銲渣系包藥銲線)

化學成份	銲線	遮護					化學	成份 V	Vt %				
記號	種類		С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	Nb+ Ta
307			≦ 0.13	≦1.0	3.30~ 4.75	≦ 0.04	≦ 0.03	9.0~ 10.5	18.0~ 20.5	0.5~ 1.5	≦ 0.50	_	_
308			≦ 0.08	≦ 1.00	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	18.0~ 21.0	≦ 0.5	≦0.5	_	_
308L			≦ 0.04	≦ 1.00	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 12.0	18.0~ 21.0	≦0.5	≦0.5	_	_
308H			0.04~ 0.08	≦ 1.00	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	18.0~ 21.0	≦ 0.5	≦0.5	_	_
308N2	F	C, M B, G	≦ 0.10	≦1.0	1.0~ 4.0	≦ 0.04	≦ 0.03	7.0~ 11.0	20.0~ 25.0	≦ 0.5	≦0.5	0.12~ 0.30	
308Mo			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.5	_	_
308MoJ			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	8.0~ 11.0	17.5~ 20.5	2.0~ 3.0	≦0.5	_	_
308LMo			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.5	_	
309			≦ 0.10	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	22.0~ 25.0	≦0.5	≦0.5	_	_

表一全熔填銲接金屬化學成份記號(氣體遮護型銲渣系包藥銲線)(續)

人 人 人	△日√白		化學成份 Wt % C Si Mn P S Ni Cr Mo Cu										(小貝 /
化學成份 記號	銲線 種類		С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	Nb+ Ta
309L			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	22.0~ 25.0	≦0.5	≦0.5	_	_
309J			≦ 0.08	≦1.0	0.5~	≦ 0.04	≦ 0.03	12.0~ 14.0	25.0~ 28.0	≦0.5	≦0.5	_	_
309Mo			≦ 0.12	≦1.0	0.5~	≦ 0.04	≦ 0.03	12.0~ 16.0	21.0~ 25.0	2.0~	≦0.5	_	_
309LMo			≦ 0.04	≦1.0	0.5~	≦ 0.04	≦ 0.03	12.0~ 16.0	21.0~ 25.0	2.0~	≦ 0.50	_	_
309LNb			≦ 0.04	≦1.0	0.5~	≦ 0.04	≦ 0.03	12.0~	22.0~ 25.0	≦0.5	≦0.5	_	Nb:0.7~
310			≦ 0.20	≦ 1.00	1.0~	≦ 0.03	≦ 0.03	20.0~	25.0~ 28.0	≦0.5	≦0.5	_	_
312			≦ 0.15	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	8.0~ 10.5	28.0~ 32.0	≦0.5	≦0.5	_	_
316			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.5	_	_
316L			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.5	_	_
316H			0.04~ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.5	_	_
316LCu	F	C, M B, G	≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 16.0	17.0~ 20.0	1.25~ 2.75	1.0~ 2.5	_	_
317			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	18.0~ 21.0	3.0~ 4.0	≦0.5	_	_
317L			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 16.0	18.0~ 21.0	3.0~ 4.0	≦0.5	_	_
318			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	17.0~ 20.0	2.0~ 3.0	≦0.5	_	Nb:8× C~1.0
329J4L			≦ 0.04	≦1.0	0.5~ 2.0	≦ 0.04	≦ 0.03	8.0~ 11.0	23.0~ 27.0	2.5~ 4.0	≦1.0	0.08~ 0.30	_
347			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	18.0~ 21.0	≦0.5	≦0.5	_	Nb:8× C~1.0
347L			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	18.0~ 21.0	≦0.5	≦0.5	_	Nb:8× C~1.0
409			≦ 0.10	≦1.0	≦ 0.80	≦ 0.04	≦ 0.03	≦0.6	10.5~ 13.5	≦0.5	≦0.5	_	Ti:10× C~1.5
409Nb			≦ 0.12	≦1.0	≦1.2	≦ 0.04	≦ 0.03	≦0.6	10.5~ 14.0	≦0.5	≦0.5	_	Nb:8× C~1.5
410			≦ 0.12	≦1.0	≦1.2	≦ 0.04	≦ 0.03	≦0.6	11.0~ 13.5	≦0.5	≦0.5	_	_
410NiMo			≦ 0.06	≦1.0	≦1.0	≦ 0.04	≦ 0.03	4.0~ 5.0	11.0~ 12.5	0.4~ 0.7	≦0.5	_	_

表一全熔填銲接金屬化學成份記號(氣體遮護型銲渣系包藥銲線)(續) 表二全熔填銲接金屬化學成份記號(無氣遮護型銲渣系包藥銲線)(續)

小 題	學成份 銲線 遮護						11	:學成份	} Wt %				
記號	種類		С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	Nb+ Ta
430			≦ 0.10	≦1.0	≦1.2	≦ 0.04	≦ 0.03	≦0.6	15.0~ 18.0	≦0.5	≦0.5	_	_
430Nb			≦ 0.10	≦1.0	≦1.2	≦ 0.04	≦ 0.03	≦0.6	15.0~ 18.0	≦0.5	≦0.5	_	Nb:0.5 ~1.5
16-8-2	F	C, M B, G	≦ 0.10	≦ 0.75	0.5~ 2.5	≦ 0.04	≦ 0.03	7.5~ 9.5	14.5~ 16.5	1.0~ 2.0	≦0.5	_	_
2209			≦ 0.04	≦1.0	0.5~ 2.0	≦ 0.04	≦ 0.03	7.5~ 10.0	21.0~ 24.0	2.5~ 4.0	≦0.5	0.08~ 0.20	_
2553			≦ 0.04	≦ 0.75	0.5~ 1.5	≦ 0.04	≦ 0.03	8.5~ 10.5	24.0~ 27.0	2.9~ 3.9	1.5~ 2.5	0.10~ 0.20	_

表二全熔填銲接金屬化學成份記號(無氣遮護型銲渣系包藥銲線)

化學成份	銲線	遮護					化	學成份	Wt %				
記號		氣體	С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	Nb+ Ta
307			≦ 0.13	≦1.0	3.30~ 4.75	≦ 0.04	≦ 0.03	9.0~ 10.5	19.5~ 22.0	0.5~ 1.5	≦0.5	_	_
308			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	19.5~ 22.0	≦0.5	≦0.5	_	_
308L			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 12.0	19.5~ 22.0	≦0.5	≦0.5	_	_
308H			0.04~ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	19.0~ 22.0	≦0.5	≦0.5	_	_
308Mo			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	18.0~ 21.0	2.0~ 3.0	≦0.5	_	_
308LMo			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 12.0	18.0~ 21.0	2.0~ 3.0	≦0.5	_	_
308HMo	F	N	0.07~ 0.12	0.25~ 0.80	1.25~ 2.25	≦ 0.04	≦ 0.03	9.0~ 10.7	19.0~ 21.5	1.8~ 2.4	≦0.5	_	_
309			≦ 0.10	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	23.0~ 25.5	≦0.5	≦0.5	_	_
309L			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	23.0~ 25.5	≦0.5	≦0.5	_	_
309Mo			≦ 0.12	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 16.0	21.0~ 25.0	2.0~ 3.0	≦0.5	_	_
309LMo			≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 16.0	21.0~ 25.0	2.0~ 3.0	≦0.5	_	_
309LNb			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	12.0~ 14.0	23.0~ 25.0	≦0.5	≦0.5	_	Nb:0.7 ~1.0
310			≦ 0.20	≦1.0	1.0~ 2.5	≦ 0.03	≦ 0.03	20.0~ 22.5	25.0~ 28.0	≦0.5	≦0.5	_	_

化學成份	銲線	遮護					16	學成份	} Wt %				
記號	垂類		С	Si	Mn	Р	S	Ni	Cr	Мо	Cu	N	Nb+ Ta
312			≦ 0.15	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	8.0~ 10.5	28.0~ 32.0	≦ 0.50	≦0.5	_	_
316			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	18.0~ 20.5	2.0~ 3.0	≦0.5	_	_
316L			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	18.0~ 20.5	2.0~ 3.0	≦0.5	_	_
316H			0.04~ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	18.0~ 20.5	2.0~ 3.0	≦0.5	_	_
316LCu			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 16.0	18.0~ 20.5	1.25~ 2.75	1.0~ 2.5	_	_
317			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	13.0~ 15.0	18.5~ 21.0	3.0~ 4.0	≦0.5	_	_
317L			≦ 0.03	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	13.0~ 15.0	18.5~ 21.0	3.0~ 4.0	≦0.5	_	_
318			≦ 0.08	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	11.0~ 14.0	18.0~ 20.5	2.0~	≦0.5	_	Nb:8× C~1.0
347			≦ 0.08	≦1.0	0.5~	≦ 0.04	≦ 0.03	9.0~ 11.0	19.0~ 21.5	≦0.5	≦0.5	_	Nb:8× C~1.0
347L	F	N	≦ 0.04	≦1.0	0.5~ 2.5	≦ 0.04	≦ 0.03	9.0~ 11.0	19.0~ 21.5	≦0.5	≦0.5	_	Nb:8× C~1.0
409			≦ 0.10	≦1.0	≦ 0.80	≦ 0.04	≦ 0.03	≦0.6	10.5~ 13.5	≦0.5	≦0.5	_	Ti:10× C~1.5
409Nb			≦ 0.12	≦1.0	≦1.0	≦ 0.04	≦ 0.03	≦0.6	10.5~ 14.0	≦0.5	≦0.5	_	Nb:8× C~1.5
410			≦ 0.12	≦1.0	≦1.0	≦ 0.04	≦ 0.03	≦0.6	11.0~ 13.5	≦0.5	≦0.5	_	_
410NiMo			≦ 0.06	≦1.0	≦1.0	≦ 0.04	≦ 0.03	4.0~ 5.0	11.0~ 12.5	0.4~ 0.7	≦0.5	_	_
430			≦ 0.10	≦1.0	≦1.0	≦ 0.04	≦ 0.03	≦0.6	15.0~ 18.0	≦0.5	≦0.5		
430Nb			≦ 0.10	≦1.0	≦1.0	≦ 0.04	≦ 0.03	≦0.6	15.0~ 18.0	≦0.5	≦0.5	_	Nb:0.5 ~1.5
16-8-2			≦ 0.10	≦ 0.75	0.5~ 2.5	≦ 0.04	≦ 0.03	7.5~ 9.5	14.5~ 16.5	1.0~ 2.0	≦0.5	_	_
2209			≦ 0.04	≦1.0	0.5~ 2.0	≦ 0.04	≦ 0.03	7.5~ 10.0	21.0~ 24.0	2.5~ 4.0	≦0.5	0.08~ 0.20	_
2553			≦ 0.04	≦ 0.75	0.5~ 1.5	≦ 0.04	≦ 0.03	8.5~ 10.5	24.0~ 27.0	2.9~	1.5~ 2.5	0.10~ 0.20	_

JIS銲材規格

化學成	CIA.
心記帳	-

表三 全熔填銲接金屬化學成份記號(氣體遮護型金屬粉系包藥銲線)

化學成	銲線	遮護					化	學成份	Wt %				
份記號	種類	氣體	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	N	其它
			≦	0.30~	1.0~	≦	≦	9.0~	19.5~	≦	≦		7.0
		Α	0.03	0.65	2.5	0.03	0.03	11.0	22.0	0.75	0.75	_	_
308L			≦		0.5~	≦	≦	9.0~	18.0~	≦	≦		
		M	0.04	≦1.0	2.5	0.04	0.03	12.0	21.0	0.75	0.75	_	_
			≦	0.30~	1.0~	≦	≦	9.0~	18.0~	2.0~	≦		
308Mo		A,M	0.08	0.65	2.5	0.03	0.03	12.0	21.0	3.0	0.75	_	_
00014			\leq	0.30~	1.0~	≦	≦	8.0~	17.5~	2.0~	≦		
308MoJ		A,M	0.08	0.65	2.5	0.03	0.03	11.0	20.5	3.0	0.75	_	_
			≦	0.30~	1.0~	≦	\leq	12.0~	23.0~	\leq	\leq		
0001		Α	0.03	0.65	2.5	0.03	0.03	14.0	25.0	0.75	0.75	_	_
309L			\leq		0.5~	\leq	≦	12.0~	22.0~	\leq	\leq		
		M	0.04	≦1.0	2.5	0.04	0.03	14.0	25.0	0.75	0.75	_	_
		^	\leq	0.30~	1.0~	\leq	≦	12.0~	23.0~	2.0~	\leq		
2001 Ma		Α	0.03	0.65	2.5	0.03	0.03	14.0	25.0	3.0	0.75		_
309LMo		B.4	\leq	<10	0.5~	\leq	\leq	12.0~	21.0~	2.0~	\leq		
		М	0.04	≦1.0	2.5	0.04	0.03	16.0	25.0	3.0	0.75	_	_
		^	\leq	0.30~	1.0~	\leq	\leq	11.0~	18.0~	2.0~	\leq		
316L		Α	0.03	0.65	2.5	0.03	0.03	14.0	20.0	3.0	0.75	_	_
310L		М	\leq	≦1.0	0.5~	\leq	\leq	11.0~	17.0~	2.0~	\leq		
		IVI	0.04	= 1.0	2.5	0.04	0.03	14.0	20.0	3.0	0.75		
	M	Α	\leq	0.30~	1.0~	\leq	\leq	9.0~	19.0~	\leq	\leq		Nb+Ta
347	IVI	A	0.08	0.65	2.5	0.04	0.03	11.0	21.5	0.75	0.75		10xC~1.0
347		М	\leq	≦1.0	0.5~	\leq	\leq	9.0~	18.0~	\leq	\leq	_	Nb+Ta
		IVI	0.08	= 1.0	2.5	0.04	0.03	11.0	21.0	0.75	0.75		8xC~1.0
409		Α	\leq	≦0.8	≦0.8	\leq	\leq	≦0.6	10.5~	\leq	\leq	_	Ti:10×
403		^	0.08	=0.0	=0.0	0.03	0.03	=0.0	13.5	0.75	0.75		C~1.5
409Nb		A,M	\leq	≦1.0	≦1.2	\leq	\leq	≦0.6	10.5~	\leq	\leq	_	Nb+Ta
TOSIND		/!V!	0.12	= 1.0	= 1.2	0.04	0.03	=0.0	14.0	0.75	0.75		8xC~1.5
		Α	\leq	≦0.5	≦0.6	\leq	\leq	≦0.6	11.5~	\leq	≦	_	_
410			0.12	_0.0	_0.0	0.03	0.03	_0.0	13.5	0.75	0.75		
710		М	\leq	≦1.0	≦1.2	\leq	≦	≦0.6	11.0~	\leq	≦	_	_
			0.12	_ 1.0		0.04	0.03		13.5	0.75	0.75		
		Α	\leq	≦0.5	≦0.6	≦	\leq	4.0~	11.0~	0.4~	≦	_	_
410NiMo		/ \	0.06	_0.0	_0.0	0.03	0.03	5.0	12.5	0.7	0.75		
1101111110		М	\leq	≦1.0	≤1 0	\leq	\leq	4.0~	11.0~	0.4~	\leq	_	_
			0.06	_ 1.0	_ 1.0	0.04	0.03	5.0	12.5	0.7	0.75		
		Α	\leq	≤0.5	≦0.6	≦	\leq	≦0.6	15.5~	\leq	≦	_	_
430			0.10		_ 5.5	0.03	0.03	_ 5.5	17.0	0.75	0.75		
. 50		М	\leq	≦1.0	≤1.2	\leq	\leq	≦0.6	15.0~	\leq	\leq	_	_
			0.10			0.04	0.03	_ 5.5	18.0	0.75	0.75		
430Nb		A,M	\leq	≦1.0	≤1.2	\leq	\leq	≦0.6	15.0~	\leq	≦		Nb+Ta
		,	0.10			0.04	0.03	_ 5.5	18.0	0.75	0.75		0.5~1.5

表四 全熔填銲接金屬化學成份記號(TIG用包藥銲棒)

化學成	銲線	遮護					化	學成份	Wt %				
份記號	種類	氣體	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	N	其它
308L			\leq	≦ 1.2	0.5~	\leq	\leq	9.0~	18.0~	≦ 0.5	≤0.5		
JUOL			0.03	= 1.2	2.5	0.04	0.03	11.0	21.0	=0.5	≝0.5		
309L			\leq	≦1.2	0.5~	\leq	\leq	12.0~	22.0~	≦0.5	≦ 0.5		
309L	R		0.03	=1.2	2.5	0.04	0.03	14.0	25.0	=0.5	=0.5		
316L	K	1	\leq	≦1.2	0.5~	\leq	\leq	11.0~	17.0~	2.0~	≦ 0.5		
310L			0.03	=1.2	2.5	0.04	0.03	14.0	20.0	3.0	=0.5		
347			\leq	≦1.2	0.5~	\leq	\leq	9.0~	18.0~	≦0.5	≦0.5		Nb+Ta
347			0.08	= 1.2	2.5	0.04	0.03	11.0	21.0	=0.5	=0.5		8xC~1.0

銲接金屬(全銲道)機械性質記號

化學成份記號	抗拉強度 MPa (N/mm²)	延伸率 %	銲後熱處理
307	590以上	25以上	不需要
308	550以上	30以上	不需要
308L	520以上	30以上	不需要
308H	550以上	30以上	不需要
308N2	690以上	20以上	不需要
308Mo	550以上	30以上	不需要
308MoJ	620以上	20以上	不需要
308LMo	520以上	30以上	不需要
308HMo	550以上	30以上	不需要
309	550以上	25以上	不需要
309L	520以上	25以上	不需要
309J	550以上	15以上	不需要
309Mo	550以上	15以上	不需要
309LMo	520以上	15以上	不需要
309LNb	520以上	25以上	不需要
310	550以上	25以上	不需要
312	660以上	15以上	不需要
316	520以上	25以上	不需要
316L	485以上	25以上	不需要
316H	520以上	25以上	不需要
316LCu	485以上	25以上	不需要
317	550以上	20以上	不需要
317L	520以上	20以上	不需要
318	520以上	20以上	不需要
329J4L	690以上	15以上	不需要
347	520以上	25以上	不需要
347L	520以上	25以上	不需要
409	450以上	15以上	不需要

電銲條

種類

DCoCrA

DCoCrB

DCoCrC

DCoCrD

BR

C Si Mn P

被覆劑

系統

DF2A	B,R,BR	0.30	1.5	3.0	0.03	0.03	_	3.0	1.5	_	殘餘	_	1.0
DF2B	B,R,BR	0.30~ 1.00	1.5	3.0	0.03	0.03	_	5.0	1.5	_	殘餘	_	1.0
DF3B	В	0.20~ 0.50	3.0	3.0	0.03	0.03	_	3.0~ 9.0	2.5	2.0	殘餘	_	1.0
DF3C	В	0.50~ 1.50	3.0	3.0	0.03	0.03	_	3.0~ 9.0	2.5	4.0	殘餘	_	2.5
DF4A	В	0.30	3.0	4.0	0.03	0.03	6.0	9.0~ 14.0	2.0	2.0	殘餘	_	2.5
DF4B	В	0.30~ 1.50	3.0	4.0	0.03	0.03	3.0	9.0~ 14.0	2.0	2.0	殘餘	_	2.5
DF5A	B,BR	0.50~ 1.00	1.0	1.0	0.03	0.03	_	3.0~ 5.0	4.0~ 9.5	1.0~ 7.0	殘餘	_	4.0
DF5B	B,BR	0.50~ 1.00	1.0	1.0	0.03	0.03	_	3.0~ 5.0	_	16.0~ 19.0	殘餘	4.0~ 11.0	4.0
DFMA	В	1.10	0.8	11.0~ 18.0	0.03	0.03	3.0	4.0	2.5	_	殘餘	_	1.0
DFMB	В	1.10	0.8	11.0~ 18.0	0.03	0.03	3.0~ 6.0	0.5	_	_	殘餘	_	1.0
DFME	В	1.10	0.8	12.0~ 18.0	0.03	0.03	6.0	14.0~ 18.0	4.0	_	殘餘	_	4.0
DFCrA	B,R,BR	2.5~ 6.0	3.5	7.5	0.03	0.03	3.0	20.0~ 35.0	6.0	6.5	殘餘	5.0	9.0
DFWA	S	2.00~ 4.00	2.5	3.0	0.03	0.03	3.0	3.0	7.0	40.0~ 70.0	殘餘	3.0	2.0

全熔填銲接金屬化學成份 Wt % (max.)

Ni Cr Mo W Fe Co

1.0

25.0~ 32.0 1.0 5.0 殘餘 0.5

5.0 殘餘 0.5

1.0 5.0 殘餘 0.5

S

註:B:塩基型, R:高氧化鈦型, BR:石灰氧化鈦型, S:特殊型

0.70~ 2.0 2.0 0.03 0.03 3.0 25.0~

2.0 2.0 0.03 0.03 3.0

2.0 2.0 0.03 0.03 3.0 25.0~ 1.0

0.35 | 1.0 | 1.0 | 0.03 | 0.03 | 3.5 | | 23.0~ | 3.0~ | 3.0~ |

化學成份記號

409Nb

410

410NiMo

430

430Nb

16-8-2

2209

2553

- a.延伸率標點距離為拉力棒直徑之5倍。
- b.試片加工前,先加熱至730~760℃,持温1小時後,每小時以55℃以下的冷卻速度,爐冷至315℃後空冷。

銲接金屬(全銲道)機械性質記號(續)

延伸率%

15以上

15以上

10以上

15以上

13以上

25以上

15以上

13以上

銲後熱處理

b

b

С

d

d

不需要

不需要

不需要

抗拉強度 MPa (N/mm²)

450以上

480以上

760以上

450以上

450以上

520以上

690以上

760以上

- c. 試片加工前, 先加熱至590~620℃, 持温1小時後空冷。
- d.試片加工前,先加熱至在760~790℃,持温2小時後,每小時以55℃以下的冷卻速度,爐冷至600℃後空冷。

格

320

321

S銲材規格

JIS Z3251

	銲接金屬硬度值									
標稱硬度	維氏硬度	洛氏	勃氏硬度							
	HV	HRB	HRC	机以贬反						
200	250以下	100以下	22以下	238以下						
250	200~300	92~106	11~30	190~284						
300	250~350	100~109	22~36	238~331						
350	300~400	_	30~41	284~379						
400	350~450	_	36~45	331~425						
450	400~500	_	41~49	379~465						
500	450~600	_	45~55	_						
600	550~700	_	52~60	_						
700	650以上	_	58以上	_						

S-G不等於S-G

本公司所生產的S-G實心銲線,正式的規格名稱是 JIS Z3312 YGW11;由於 AWS 沒有相當的對應規格,因此只好對應到 A5.18 ER70S-G。如果您翻閱 AWS 的規格就會發現,在 AWS A5.18 Table 1 中對於 ER70S-G(= AWS A5.18M ER48S-G)的化學成份部份寫著:Not Specified^(f)而註釋(f)則寫著:由買賣雙方協議。 換言之, A5.18 ER70S-G / A5.18M ER48S-G 是留給製造廠商一個空間去發展合於這個等級但是規格中並沒有可對應類別的產品。在這裡要注意的問題來了,基於標示 ER70S-G 的產品是由買賣雙方協議的產品,也就代表著標示 ER70S-G 的產品有各種的可能性。因此A廠商的ER70S-G 就有可能跟B廠商的ER70S-G 是完全不同的東西。

台灣國內YGW 11的銲線應用甚廣,但是明明是日本人開發的東西,偏偏施工規範卻是根據美國規範的AWS。也只好大家不講"YGW11",只講"S-G",經年累月下來,很多人都誤以為 S-G 就是加了Ti(鈦)的銲線,其實並非如此。如果您説的 S-G 是指本公司的產品 S-G,這是對的,因為本公司的產品 S-G 就是 JIS Z3312 YGW11,也就是加了Ti,以利於採用CO2當保護氣體時也能大電流銲接的產品。但是如果您説的 S-G 是指 AWS A5.18 ER70S-G,那就有待商榷了,因為 AWS A5.18 ER70S-G 對於成份其實是沒有規定的,而是讓買賣雙方去自行協議的。

那麼 AWS A5.18 ER70S-G / A5.18M ER48S-G 的 "G" 代表什麼意思呢? "G" 是代表General 的意思。這一點,老師沒教吧?

222

老師沒教的

硬度對照表 (續)

維氏硬	勃氏硬度值				洛氏表皮硬度值			蕭氏硬	維氏硬			
度質	10mm 標準球	Hultgren 球	碳化 鎢球	A尺度	B尺度	C尺度	D尺度	15N	30N	45N	度質	度質
940	_	_	_	85.6		68.0	76.9	93.2	84.4	75.4	97	940
920	_	_	_	85.3	_	67.5	76.5	93.0	84.0	74.8	96	920
900	_	_	_	85.0	_	67.0	76.1	92.9	83.6	74.2	95	900
880	_	_	767	84.7	_	66.4	75.7	92.7	83.1	73.6	93	880
860	_	_	757	84.4	_	65.9	75.3	92.5	82.7	73.1	92	860
840	_	_	745	84.1	_	65.3	74.8	92.3	82.2	72.2	91	840
820	_	_	733	83.8	_	64.7	74.3	92.1	81.7	71.8	90	820
800	_	_	722	83.4	_	64.0	73.8	91.8	81.1	71.0	88	800
780	_	_	710	83.0	_	63.3	73.3	91.5	80.4	70.2	87	780
760	_	_	698	82.6	_	62.5	72.6	91.2	79.7	69.4	86	760
740	_	_	684	82.2	_	61.8	72.1	91.0	79.1	68.6	84	740
720	_	_	670	81.8	_	61.0	71.5	90.7	89.4	67.7	83	720
700	_	615	656	81.3	_	60.1	70.8	90.3	77.6	66.7	81	700
690	_	610	647	81.1	_	59.7	70.5	90.1	77.2	66.2	_	690
680	_	603	638	80.8	_	59.2	70.1	89.8	76.8	65.7	80	680
670	_	597	630	80.6	_	58.8	69.8	89.7	76.4	65.3	_	670
660	_	590	620	80.3	_	58.3	69.4	89.5	75.9	64.7	79	660
650	_	585	611	80.0	_	57.8	69.0	89.2	75.5	64.1	_	650
640	_	578	601	79.8	_	57.3	68.7	89.0	75.1	63.5	77	640
630	_	571	591	79.5	_	56.8	68.3	88.88	74.6	63.0	_	630
620	_	564	582	79.2	_	56.3	67.9	88.5	74.2	62.4	75	620
610	_	557	573	78.9	_	55.7	67.5	88.2	73.6	61.7	_	610
600	_	550	564	78.6	_	55.2	67.0	88.0	73.2	61.2	74	600
590	_	452	554	78.4	_	54.2	66.7	87.8	72.7	60.5	_	590
580	_	535	545	78.0		54.1	66.2	87.5	72.1	59.9	72	580
570	_	527	535	77.8	_	53.6	65.8	87.2	71.7	59.3	_	570
560	_	519	525	77.4	_	53.0	65.4	86.9	71.2	58.6	71	560
550	505	512	517	77.0	_	52.3	64.8	86.6	70.5	57.8	_	550
540	496	503	507	76.7	_	51.7	64.4	86.3	79.0	57.0	69	540
530	488	495	497	76.4	_	51.1	63.9	86.0	69.5	56.2	_	530
520	480	487	488	76.1	_	50.5	63.5	85.7	69.0	55.6	67	520
510	473	479	479	75.7	_	49.8	62.9	85.4	68.3	54.7	_	510
500	465	471	471	75.3	_	49.1	62.2	85.0	67.7	53.9	66	500
490	456	460	460	74.9	_	48.4	61.6	84.7	67.1	53.1	_	490
480	448	452	452	74.5	_	47.7	61.3	84.3	66.4	52.2	64	480
470	441	442	442	74.1	_	46.9	60.7	83.9	65.7	51.3	_	470

硬度對照表

9# IT IT	勃氏硬度值			洛氏表皮硬度值			芸 爪 玩	纵 广压				
維氏硬 度質	10mm 標準球	Hultgren 球	碳化 鎢球	A尺度	B尺度	C尺度	D尺度	15N	30N	45N	蕭氏硬 度質	推氏使 度質
460	433	433	433	73.6	_	46.1	60.1	86.6	64.9	50.4	62	460
450	425	425	425	73.3	_	45.3	59.4	83.2	64.3	49.4	_	450
440	415	415	415	72.8	_	44.5	58.8	82.8	63.5	48.4	59	440
430	405	405	405	72.3	_	43.6	58.2	82.3	62.7	47.4	_	430
420	397	397	397	71.8	_	42.7	57.5	81.8	61.9	46.4	57	420
410	388	388	388	71.4	_	41.8	53.8	81.4	61.1	45.3	_	410
400	379	379	379	70.8	_	40.8	56.0	81.0	60.2	44.1	55	400
390	369	369	369	70.3	_	39.8	55.2	80.3	59.3	42.9	_	390
380	360	360	360	69.8	(110.0)	38.8	54.4	79.8	58.4	41.7	52	380
370	350	350	350	69.2	_	37.7	53.6	79.2	57.4	40.4	_	370
360	341	341	341	68.7	(109.0)	36.6	52.8	78.6	56.4	39.1	50	360
350	331	330	330	68.1	_	35.5	51.9	78.0	55.4	37.8	_	350
340	322	322	322	67.6	(108.0)	34.4	51.1	77.4	54.4	36.5	47	340
330	313	313	313	67.0	_	33.3	50.2	76.8	53.6	35.2	_	330
320	303	303	303	66.4	(107.0)	32.2	49.4	76.2	52.3	33.9	45	320
310	294	294	294	65.8	_	31.0	48.4.	75.6	51.3	32.5	_	310
300	284	284	284	65.2	(105.5)	29.8	47.5	74.9	50.2	31.1	42	300
295	280	280	280	64.8	_	29.2	47.1	74.6	49.7	30.4	_	295
290	275	275	275	64.5	(104.5)	28.5	46.5	74.2	49.0	29.5	41	290
285	270	270	270	64.2	_	27.8	46.0	73.8	48.4	28.7	_	285
280	265	265	265	63.8	(103.5)	27.1	45.3	73.4	47.8	27.9	40	280
275	261	261	261	63.5	_	26.4	44.9	73.0	47.2	27.1	_	275
270	256	256	256	63.1	(102.0)	25.6	44.3	72.6	46.4	26.2	38	270
265	252	252	252	62.7	_	34.8	43.7	72.1	45.7	25.2	_	265
260	247	247	247	62.4	(101.0)	24.0	43.1	71.6	45.0	24.3	37	260
255	243	243	243	62.0	_	23.1	42.2	71.1	44.2	23.2	_	255
250	238	238	238	61.6	99.5	22.2	41.7	70.6	43.4	22.2	36	250
245	233	233	233	61.2	_	21.2	41.1	70.1	42.5	21.1	_	245
240	228	228	228	60.7	98.1	20.3	40.3	69.6	41.7	19.9	34	240
230	219	219	219	_	96.7	(18.0)	_	_	_	_	33	230
220	209	209	209	_	95.0	(15.7)	_	_	_	_	32	220
210	200	200	200	_	93.4	(13.4)	_	_	_	_	30	210
200	190	190	190	_	91.5	(11.0)	_	_	_		29	200
190	181	181	181	_	89.5	(8.5)	_	_	_	_	28	190
180	171	171	171	_	87.1	(6.0)	_	_	_	_	26	180
170	162	162	162	_	85.0	(3.0)	_	_	_	_	25	170

硬度對照表

硬度對照表(續)

勃氏硬度值 維氏硬				洛氏表皮硬度值			蕭氏硬	維氏硬				
度質	10mm 標準球	Hultgren 球	碳化 鎢球	A尺度	B尺度	C尺度	D尺度	15N	30N	45N	度質	度質
160	152	152	152	_	81.7	(0.0)	_	_	_	_	24	160
150	163	143	143	_	78.7	_	_	_	_	_	22	150
140	133	133	133	_	75.0	_	_	_	_	_	21	140
130	124	124	124	_	71.2	_	_	_	_	_	20	130
120	114	114	114	_	66.7	_	_	_	_	_	_	120
110	105	105	105	_	62.3	_	_	_	_	_	_	110
100	95	95	95	_	56.2	_		_	_	_	_	100
95	90	90	90	_	52.0	_	_	_	_	_	_	95
90	86	86	86	_	48.0	_	_	_	_	_	_	90
85	81	81	81	_	41.0	_	_	_	_	_	_	85

註:

勃氏硬度質Brinell Hardness 洛氏硬度質Rockwell Hardness 洛氏表皮硬度質Rockell Superficial Hardness 蕭氏硬度質Shore Hardness 維氏硬度質Vickers Hardness

度量衡換算表

	ft		in	mm	m					
長度	1	1		304.8	0.30479					
IXIX	0.083330		1	25.4	0.025399					
	0.00328100	0.	03937	1	0.001					
重量		2.20462 lb								
カ	1kgf=9.80665 N									
	Ksi (=1000psi)		psi	kgf / mm²	N/mm² (=MPA)					
	1		1000	0.703070	6.89476					
應力	0.001000		1	0.000000	0.000000					
	1.42233	14	22.33	1	9.80665					
	0.145038	14	5.038	0.101972	1					
	ft-lbf		I	kgf-m	N-m (=Joule)					
4k 具 / 注: 報()	1		0.13	8825728	1.35582					
能量(衝擊)	7.23275		1		9.80665					
	0.73753		0.	101972	1					
				$^{\circ}\mathbb{C}$	°F					
				0	32					
温度	°F =32+9 / 5°C			-5	23					
温度	F -32+9 / 5 C	,		-10	14					
				-20	-4					
				-40	-40					

各區營業所聯絡電話及住址如下:

總公司 71041 台南 · 永康 · 環工路99號 TEL:06-2331003 FAX:06-2333213 台北所 24447 台北·林口·文化一路一段15巷6號 TEL:02-26002415 FAX:02-26002382 斗南所 63051 雲林 · 斗南 · 興業路51-1號 TEL:05-5951156 FAX:05-5951337 高雄所 81455 高雄・仁武・大灣村大春三街68號 TEL:07-3756901 FAX:07-3756033