The categorization of Nickel and Nickel base alloy depends on the alloy’s main elemental contents of Ni, Cu, Cr, Fe and Mo. The most common ones are Ni, Ni-Cu, Ni-Mo, Ni-Cr-Fe, Ni-Cr-Mo, Ni-Cr-Mo-Cu, Ni-Fe-Cr, and other alloys. Pure Nickel contains very low amount of other alloys, which is categorized using 200 numeric series; Ni-Cu is Monel alloy which is categorized as 400 numeric series; among Ni-Cr-Fe alloy series, if Ni element is higher, then it is under 600 series’ Inconel alloy; if Fe is dominant, then it is of 800 series’ Incoloy alloy; as for Ni-Mo (Fe) and Ni-Cu-Mo (W, Cu), they belong to Hastelloy’s alloy category.

Note: Our company’s main product is Nickel Base Alloy based; so except for the above material characteristic introduction, other instructions only use the phrase “Nickel base.”

There are three main differences when comparing Nickel Base Alloy welding with the common carbon steel welding as listed below:

a. **Welding area cleaning requirements**

 The surface of High Nickel alloy when exposed to atmosphere will easily produce Nickel oxide film. Commercial grade pure Nickel’s melting point is at 1446°C, but Nickel Oxide’s melting point reaches 2090°C; and thus during welding it will not melt with the original non-oxidized metal, unlike carbon steel with Fe oxide. When welding high Nickel alloy, while the base metal has melted, this oxide is still in solid state, which results in subtle residue of slag inclusion in the weld metal internally. This condition causes severe impact to weld metal mechanical and corrosion resistance properties. Thus whether it is before welding or after welding, it is imperative to verify that base metal contains no existence of foreign impurities. In addition, the joint area must be cleaned of surface oxide, while heavier oxide film must be removed using grinding, machining, or other methods.

b. **Sticky and high surface tension force of metal drops**

 Because of the sticky and high surface extension force of metal drops of Nickel Base Alloy melting metal is inferior to carbon steel’s metal drops which have higher wetting effect; welder might have false impression that by raising welding current the metal pool’s wetting effect will be enhanced. Actually, using strong welding current will not improve the wetting effect, but instead will create more defects because the high heat will cause the melting pool’s deoxidizer to evaporate; which will allow welding groove to form blow holes more easily.

c. **Weld metal shallow penetration**

 Nickel Base Alloy welding has poorer arc penetration force reaching sometimes only half of welding of carbon steel, the groove of root face should be thinner.
Welding Consumables Selection (Nickel base and dissimilar base metal)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Austenite series</td>
<td>G309, G309L G309Mo, GNC132, GTN82, GMN82</td>
<td>GNC132, GNC112 GTN625, GMN625</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
</tr>
<tr>
<td>Martensite series</td>
<td>G309, G309L GNC132 GTN82, GMN82</td>
<td>GNC132, GNC112 GTN625, GMN625</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
</tr>
<tr>
<td>Ferrite series</td>
<td>G309, G309L GNC132 GTN82, GMN82</td>
<td>GNC132, GNC112 GTN625, GMN625</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
</tr>
<tr>
<td>pure nickel</td>
<td>GNC132 GTN82, GMN82</td>
<td>GNC132, GNC112 GTN625, GMN625</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
<td>GNC132, GNC182 GTN82, GMN82</td>
</tr>
</tbody>
</table>

Nickel Base Alloy

- **Monel Ni-Cu alloy**
- **Incoloy Ni-Cr-Fe alloy**
- **Inconel Ni-Cr-Mo alloy**

Stainless Steel

- **Austenite series**
- **Martensite series**
- **Ferrite series**
- **pure nickel**